\(x^4\sqrt{x+3}=2x^4-2011x+2011\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

đăng ít một thôi bạn

12 tháng 8 2017

Bỏ câu c,d đi ạ 

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

18 tháng 11 2016

mik ko biết 

18 tháng 11 2016

mik k biết đâu bn à hihi -_-

AH
Akai Haruma
Giáo viên
19 tháng 2 2019

Câu 1:

ĐKXĐ: \(x\geq \frac{1}{2}\)

Ta có: \(2\sqrt{x+3}=x-1+4\sqrt{2x-1}\)

\(\Leftrightarrow (x-1)+4\sqrt{2x-1}-2\sqrt{x+3}=0\)

\(\Leftrightarrow x-1+2(2\sqrt{2x-1}-\sqrt{x+3})=0\)

\(\Leftrightarrow x-1+2.\frac{4(2x-1)-(x+3)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\) (liên hợp)

\(\Leftrightarrow (x-1)+\frac{14(x-1)}{2\sqrt{2x-1}+\sqrt{x+3}}=0\)

\(\Leftrightarrow (x-1)\left(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}\right)=0\)

Với mọi \(x\geq \frac{1}{2}\) ta luôn có \(1+\frac{14}{2\sqrt{2x-1}+\sqrt{x+3}}>0\). Do đó \(x-1=0\rightarrow x=1\) là nghiệm duy nhất

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Câu 2:

ĐKXĐ: \(1\leq x\leq 5\)

Đặt \(\sqrt[4]{x-1}=a; \sqrt[4]{5-x}=b(a,b\geq 0)\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=2\\ a^4+b^4=4\end{matrix}\right.\) \(\Rightarrow a^4+(2-a)^4=4\)

Đặt \(1-a=m\) thì pt trở thành:

\((1-m)^4+(m+1)^4=4\)

\(\Leftrightarrow 2m^4+12m^2+2=4\)

\(\Leftrightarrow m^4+6m^2-1=0\)

\(\Leftrightarrow (m^2+3)^2=10\Rightarrow m^2=\sqrt{10}-3\Rightarrow m=\pm \sqrt{\sqrt{10}-3}\)

\(\Rightarrow a=1\pm \sqrt{\sqrt{10}-3}\)

\(\Rightarrow x=(1\pm \sqrt{\sqrt{10}-3})^4+1\)