Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: 2x2−3x−4≥0,x≥12x2−3x−4≥0,x≥1
PT⇔x2+x−1+2√x(x−1)(x+1)=2x2−3x−4⇔x2+x−1+2x(x−1)(x+1)=2x2−3x−4
⇔x2−4x−3=2√(x2−x)(x+1)⇔x2−4x−3=2(x2−x)(x+1)
⇔(x2−x)−3(x+1)=2√(x2−x)(x+1)⇔(x2−x)−3(x+1)=2(x2−x)(x+1)
Đặt √x2−x=a≥0,√x+1=b>0x2−x=a≥0,x+1=b>0
Khi đó ta có: a2−3b2=2aba2−3b2=2ab
⇒(ab)2−2.ab−3=0⇒(ab)2−2.ab−3=0
⇔ab=3⇔ab=3 hoặc ab=−1ab=−1(loại vì a,b>0a,b>0)
ab=3⇒√x2−x=3√x+1
\(\sqrt{\left(x+1\right)\left(4-x\right)}>x-2\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-2<0\\\left(x+1\right)\left(4-x\right)\ge0\end{cases}\) hoặc \(\begin{cases}x-2\ge0\\\left(x+1\right)\left(4-x\right)>\left(x-2\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x<2\\-1\le x\le4\end{cases}\) hoặc \(\begin{cases}2\le x\\2x^2-7x<0\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x<2\\-1\le x\le4\end{cases}\) hoặc (2\(\le\) x; 0 < x < \(\frac{7}{2}\)
\(\Leftrightarrow\) \(-1\le x<2\) hoặc \(2\le x<\frac{7}{2}\)
\(\Leftrightarrow\) \(-1\le x<\frac{7}{2}\)
Vậy bất phương trình đã cho có nghiệm \(-1\le x<\frac{7}{2}\)
a)
\(\left\{{}\begin{matrix}x^2\ge\dfrac{1}{4}\left(1\right)\\x^2-x\le0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)x^2-0,25\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
(2)\(x^2-x\le\) \(\Leftrightarrow0\le x\le1\)
Kết hợp (1) và (2) \(\Rightarrow\dfrac{1}{2}\le x\le1\)
b)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\left(1\right)\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\left(2\right)\end{matrix}\right.\)
Giải: \(\left(1\right)\left(x-1\right)\left(2x+3\right)>0\Leftrightarrow\left[{}\begin{matrix}x< -\dfrac{3}{2}\\x>1\end{matrix}\right.\)
Giải: (2) \(\left(x-4\right)\left(x+\dfrac{1}{4}\right)< 0\Leftrightarrow-\dfrac{1}{4}\le x\le4\)
Kết hợp điều kiện của (1) và (2) ta có: (1;4] là nghiệm của hệ bất phương trình.
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+4\right)=0\)
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0⇔(x−2)(x−1)(x−1)(x+1)(x+1)(x+4)=0
<=>x=1 hoặc x=2 hoặc x=-4 hoặc x=-1
a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)
a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0
<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0
Bảng xét dấu:
Từ bảng xét dấu cho tập nghiệm của bất phương trình:
T = ∪ [2; +∞).
b) <=>
<=>
<=>
<=>
Tập nghiệm của bất phương trình T = (-∞; - 5) ∪ (- 1; 1) ∪ (1; +∞).
\(x^2+5x+4-3\sqrt{x^2+5x+2}=6\)
\(x^2+5x+2+2-3\sqrt{x^2+5x+2}=6\)
Đặt \(t=\sqrt{x^2+5x+2}\) (t >= 0)
=> t2 - 3t - 4 = 0 => t1 = -1 (loại) và t2 = 4
=> \(\sqrt{x^2+5x+2}=4\)
\(x^2+5x+2=16\)
\(x^2+5x-14=0\)
x1=-7; x2 = 2
Ta có biến đổi sau :
\(\left(2x-3\right)^2-19=\left(x-4\right)+\left(x+1\right)^2-19\)
\(=\left(\left(x-4\right)-\left(x+1\right)^2+4\left(x-4\right)\left(x+1\right)-19\right)\)
\(=25+4\left(x-4\right)\left(x+1\right)-19\)
\(=4\left(x-4\right)\left(x+1\right)+6\)
Vậy từ phương trình ban đầu ta có :
\(\Leftrightarrow2\left(x-4\right)^2\left(x+1\right)^2=4\left(x-4\right)\left(x+1\right)+6\)
\(\Leftrightarrow\left(x-4\right)^2\left(x+1\right)^2-2\left(x-4\right)\left(x+1\right)-3=0\)
\(\Leftrightarrow\left[\left(x-4\right)\left(x+1\right)+1\right]\left[\left(x-4\right)\left(x+1\right)-3\right]=0\)
\(\Leftrightarrow\left(x^2-3x-3\right)\left(x^2-3x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2-3x-3=0\\x^2-3x-7=0\end{array}\right.\)
\(\Leftrightarrow x\in\left\{\frac{3\pm\sqrt{21}}{2};\frac{3\pm\sqrt{37}}{2}\right\}\)