K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

đề bài là gì, phân tích đa thức hay tính

17 tháng 8 2020

phân tích đa thức thành nhân tử à bạn :)))

\(x^3-x+3x^2y+3xy^2-y\)

\(=x\left(x-1\right)+3x^2y+3xy\left(y-1\right)\)

\(=x\left(x-1+3xy+3y^2-3y\right)\)

10 tháng 8 2021

sau bạn đăng tách ra cho mn cùng giúp nhé 

a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)

b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)

c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)

d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)

10 tháng 8 2021

e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)

f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)

21 tháng 7 2016

\(x^3+2y^2-x^2y-2xy=\left(x^3-x^2y\right)+\left(2y^2-2xy\right)=x^2\left(x-y\right)+2y\left(y-x\right)=\left(x-y\right)\left(x^2-2y\right)\)

23 tháng 11 2016

\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)=\(\frac{-\left(x^2-y^2\right)}{\left(x-y\right)^3}\)= \(\frac{-\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^3}\)= \(\frac{-x-y}{\left(x-y\right)2}\)

23 tháng 11 2016

\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(x-y\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(y+x\right)}{\left(x-y\right)^2}\)

29 tháng 6 2018

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

Ta có: \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)

= \(\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)

=\(-\frac{x+y}{\left(x-y\right)^2}\)

=\(-\frac{x+y}{x^2-2xy+y^2}\)

15 tháng 11 2017

Phạm Quốc Cường làm đúng rồi đó

k mình nha

thanks

20 tháng 11 2018

\(A=\frac{y^3-x^3}{x^3-3x^2y+3xy^2-y^3}\)

\(A=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x-y\right)^3}\)

\(A=\frac{-\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x-y\right)^2}\)

\(A=\frac{-x^2-xy-y^2}{x^2-2xy+y^2}\)

25 tháng 8 2018

\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)

\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)

\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)

\(=-\frac{x+y}{\left(x-y\right)^2}\)