K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Chú ý: Góc giữa 2 vectơ có thể là góc tù.

19 tháng 11 2019

Đáp án B

Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

TH2: I  ∈ (P), với I là trung điểm của BC

Cách giải:

Ta có: 

(P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

=> (P) đi qua O và nhận  là 1 VTPT

TH2:  (P) với I là trung điểm của BC

 

=> (P): 6x – 3y + 4z = 0

Dựa vào các đáp án ta chọn được đáp án B

6 tháng 4 2017

Đáp án C

 

2 tháng 10 2019

Đáp án C

19 tháng 11 2019

Chọn C.

16 tháng 1 2019

Gọi I là trung điểm của BC. Ta chứng minh được 

Suy ra I là hình chiếu của A 1  trên BC nên I(0;0;1)

Chọn VTCP của 

Chọn D.

15 tháng 7 2019

Đáp án C.

Phương pháp: 

- Viết phương trình mặt phẳng α .  

- Tìm tọa độ giao điểm B, C của  α với trục Oy, Oz.

- Tính thể tích khối tứ diện vuông OABC: V = 1 6 . O A . O B . O C .  

Cách giải:

Giả sử n → a ; b ; c ,   a 2 + b 2 + c 2 ≠ 0  là một vecto pháp tuyến của (P).

Vì α đi qua A 2 ; 0 ; 0 nên PTTQ của (P):

a x − 2 + b y − 0 + c z − 0 = 0  

⇔ a x + b y + c z − 2 a = 0.  

Vì α  vuông góc với α nên n → a ; b ; c  vuông góc với n 1 → 0 ; 2 ; − 1 .  

Khi đó,

0. a + 2. b + − 1 . c = 0 ⇔ c = 2 b  

⇒ α : a x + b y + 2 b z − 2 a = 0  

d O ; α = 4 3 ⇔ − 2 a a 2 + b 2 + 4 b 2 = 4 3 ⇔ 6 a 2 = 16 a 2 + 5 b 2 ⇔ a 2 = 4 b 2 ⇔ a = 2 b a = − 2 b  

Cho

b = 1 ⇒ a = 2 a = − 2 ⇒ n → 2 ; 1 ; 2 n → − 2 ; 1 ; 2 ⇒ α : 2 x + y + 2 z − 4 = 0 α : − 2 x + y + 2 z + 4 = 0  

+ )   α : 2 x + y + 2 z − 4 = 0 ⇒ B 0 ; 4 ; 0 ,   C 0 ; 0 ; 2 ⇒ V O A B C = 1 6 . 2 . 4 . 2 = 8 3  

+ )   α : − 2 x + y + 2 z + 4 = 0 ⇒ B 0 ; − 4 ; 0 ,   C 0 ; 0 ; − 2 ⇒ V O A B C = 1 6 . 2 . − 4 . − 2 = 8 3  

Vậy thể tích khối tứ diện OABC là 8 3 .  

2 tháng 8 2017

Đáp án đúng : D

7 tháng 9 2018

Đáp án C