Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{12}{15}+\frac{22}{33}+\frac{48}{64}\)
\(=\frac{11}{33}+\frac{16}{64}+\frac{3}{15}+\frac{12}{15}+\frac{22}{33}+\frac{48}{64}\)
\(=\left(\frac{11}{33}+\frac{22}{33}\right)+\left(\frac{16}{64}+\frac{48}{64}\right)+\left(\frac{3}{15}+\frac{12}{15}\right)\)
\(\frac{33}{33}+\frac{64}{64}+\frac{15}{15}\)
\(=1+1+1\)
\(=3\)
\(\frac{7}{29}+\frac{17}{11}+\frac{22}{29}+\frac{5}{11}\)
\(=\left(\frac{7}{29}+\frac{22}{29}\right)+\left(\frac{17}{11}+\frac{5}{11}\right)\)
\(=\frac{29}{29}+\frac{22}{11}\)
\(=1+2\)
\(=3\)
Cho dãy số 1; 2; 4; 7; 11; 16; 22; …. Tìm số thứ 101
Số thứ 101 là :
( x - 1 ) : 2 + 1 = 101
= ( 101 - 1 ) . 2 + 1 = 201
Vậy số thứ 101 là : 201
\(\frac{9}{22}\)và \(\frac{3}{11}\)
Ta có : \(\frac{3}{11}=\frac{6}{22}\)
\(\frac{9}{22}+\frac{6}{22}=\frac{15}{22}\)
Ủng hộ nhé !
\(\frac{2010}{2011}< \frac{2011}{2012}\)
\(\frac{11}{12}=\frac{22}{24}\)
\(\frac{25}{30}>\frac{25}{49}\)
\(\frac{1}{5}< \frac{3}{8}\)
\(\frac{1995}{1997}< \frac{1995}{1996}\)
@nguyễn thị phương anh đây nhé :
\(\frac{12}{21}+\frac{11}{22}=\frac{264}{462}+\frac{231}{462}=\frac{495}{462}\)
\(\frac{9}{32}+\frac{35}{11}=\frac{99}{352}+\frac{1120}{352}=\frac{1219}{352}\)
\(\frac{12}{21}+\frac{11}{22}=\frac{4}{7}+\frac{1}{2}=\frac{8}{14}+\frac{7}{14}=\frac{15}{14}\)
\(\frac{9}{32}+\frac{35}{11}=\frac{99}{352}+\frac{1120}{352}=\frac{1219}{352}\)
\(\frac{9}{22}+\frac{3}{11}\)
\(=\frac{9}{22}+\frac{6}{22}\)
\(=\frac{15}{22}\)
Đáp số : \(\frac{15}{22}\)
=(1+1+1+1+1+1+1+1)+(1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45)
Đặt A = 1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Ta có:
A x 1/2= 1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
1/6=1/2x3=1/2-1/3
1/12=1/3x4=1/3-1/4
……………………
1/90=1/9x10=1/9-1/10
A x 1/2=1/2-1/3+1/3-1/4+1/4-1/5+…+1/9-1/10
A x 1/2=1/2-1/10=4/10
A=4/10:1/2=4/5
Vậy 4/3+7/6+11/10+16/15+22/21+29/28+37/36+46/45=1+1+1+1+1+1+1+1+4/5=8+4/5=44/5
\(\frac{4}{3}+\frac{7}{6}+\frac{11}{10}+...+\frac{46}{45}\)
\(=1+\frac{1}{3}+1+\frac{1}{6}+1+\frac{1}{10}+...+1+\frac{1}{45}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)(8 chữ số 1)
\(=8+\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
Đặt A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
=> \(\frac{1}{2}\)A = \(\frac{1}{2}\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\right)\)
= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Vậy A = \(\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
Do đó biểu thức trên là 8 + \(\frac{4}{5}\) = \(\frac{44}{5}\)
Đáp số: \(\frac{44}{5}\)
7 12 - 1 3 = 1 4
22 × 11 22 = 11