K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

1 4 1 + x 3 4 3 + C

27 tháng 4 2017

Hỏi đáp Toán

27 tháng 4 2017

Hỏi đáp Toán

27 tháng 4 2017

Hỏi đáp Toán

3 tháng 3 2016

a) Đặt \(u=x^2\)\(dv=2^xdx\). Khi đó \(du=2xdx\)  ; \(v=\int2^xdx=\frac{2^x}{\ln2}\)  và  \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)

Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :

\(u=x\)  ; \(dv=2^xdx\)   và thu được  \(du=dx\)    ; \(v=\frac{2^x}{\ln2}\)   Do đó

\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)

    = \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\)  = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)

3 tháng 3 2016

b) Đặt \(u=x^2\)\(dv=e^{3x}dx\)

Khi đó \(du=2xdx\)    ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)

Do đó:

\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\)  (a)

Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\)  ; \(dv=e^{3x}dx\)

Khi đó  \(du=dx\)  ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\)  và 

\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)

Thế kết quả thu được vào (a) ta có :

\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)

AH
Akai Haruma
Giáo viên
9 tháng 7 2017

a)

Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)

\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)

\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)

b)

\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)

Đặt \(u=\sqrt{x^2+1}\). Khi đó:

\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)

c)

\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)

\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2017

d)

\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)

\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)

e)

Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)

\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)

Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)

\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)

Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)

\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)