Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2=0\)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left(3y+2x\right)^2\ge0\forall x;y\)
=> \(\left|x-2\right|+\left(3y+2x\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-2=0\\3y+2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\3y=-2.2=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{4}{3}\end{cases}}\)
Vậy ...
Áp dụng HĐT đáng nhớ :
\(\left(a-b\right)\left(a+b\right)=a^2-b^2\) . Ta có :
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Chúc bạn học tốt !!!
a)
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\\ \Leftrightarrow\frac{201-x}{99}+\frac{99}{99}+\frac{203-x}{97}+\frac{97}{97}+\frac{205-x}{95}+\frac{95}{95}+4=4\\ \Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\) (*)
Do \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)\ne0\)
nên (*) \(\Leftrightarrow300-x=0\\ \Leftrightarrow x=300\)
b)
\(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\\ \Leftrightarrow\frac{2-x}{2002}+\frac{2002}{2002}-1+1=\frac{1-x}{2003}+\frac{2003}{2003}-\frac{x}{2004}+\frac{2004}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\\ \Leftrightarrow\frac{2004-x}{2002}-\frac{2004-x}{2003}+\frac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\) (*)
Do \(\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
nên (*) \(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
c) \(\left|2x-3\right|=2x-3\) (1)
ĐKXĐ: \(\\ 2x-3\ge0\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}2x-3=2x-3\\2x-3=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}0x=0\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\forall x\in R\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\frac{3}{2}\right\}\)
Bài 1.
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\) (vì \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\))
\(\Leftrightarrow x=300\)
Vậy ....
Bài 3:
a) \(\left|x-2\right|+9y^2+12xy+4x^2=0\)
\(\Leftrightarrow\left|x-2\right|+\left(3y+2x\right)^2=0\)
Dễ thấy \(VT\ge0\forall x;y\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\3y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy...
b) \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x^2+5x+\frac{25}{4}\right)+\frac{27}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x+\frac{5}{2}\right)^2=\frac{-27}{2}\)
Dễ thấy \(VT\ge0\forall x;y\) mặt khác \(VP< 0\)
Do đó pt vô nghiệm
Bài 2:
\(A=263^2+74\cdot263+37^2\)
\(A=263^2+2\cdot263\cdot37+37^2\)
\(A=\left(263+37\right)^2\)
\(A=300^2\)
\(A=90000\)
b) tương tự
\(C=-1^2+2^2-3^2+...-99^2+100^2\)
\(C=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(C=\left(2-1\right)\left(1+2\right)+\left(4-3\right)\left(3+4\right)+...+\left(100-99\right)\left(99+100\right)\)
\(C=1+2+3+4+...+99+100\)
\(C=\frac{\left(100+1\right)\cdot100}{2}=5050\)
\(D=\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{32}+1\right)\)
\(2D=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2D=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2D=3^{64}-1\)
\(D=\frac{3^{64}-1}{2}\)
\(a.\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\\\Leftrightarrow \left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\\\Leftrightarrow x-23=0\left(vi\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\ne0\right)\\ \Leftrightarrow x=23\)
Này tớ làm tắt có gì cậu không hiểu nói tớ nhé
\(b.\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\\ \Leftrightarrow\frac{x+2}{98}+1+\frac{x+3}{97}+1-\left(\frac{x+4}{96}+1+\frac{x+5}{95}+1\right)=0\\\Leftrightarrow \frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\\\Leftrightarrow \left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\\ \Leftrightarrow x+100=0\left(Vi\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\right)\\\Leftrightarrow x=-100\)
a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)
<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)
<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
<=> 300 - x = 0
<=> x = 300
b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}
<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)
<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
<=> 2004 - x = 0
<=> x = 2004.
a) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{64}-1\right)\)
\(=\dfrac{3^{64}-1}{2}\)
b) \(\left(a+b+c\right)2+\left(a-b-c\right)2+\left(b-c-a\right)2+\left(c-a-b\right)2\)
\(=2\left[\left(a+b+c\right)+\left(a-b-c\right)+\left(b-c-a\right)+\left(c-a-b\right)\right]\)
\(=2\left(a+b+c+a-b-c+b-c-a+c-a-b\right)\)
\(=2.0\)
\(=0\)
c)\(\left(a+b+c+d\right)2+\left(a+b-c-d\right)2+\left(a+c-b-d\right)2+\left(a+d-b-c\right)2\)
\(=2\left(a+b+c+d+a+b-c-d+a+c-b-d+a+d-b-c\right)\)
\(=2.4a\)
\(=8a\)
a) 6859; c) 970300;
b) 8120601; d) 140581.