\(\frac{1}{x}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

x=2; y = 2; z =1

z=2; y =2; x =1

x = 2; z=2; y =1

1 tháng 12 2019

Làm kiểu gì vậy bạn 

4 tháng 3 2019

\(\frac{x+y}{xy}=\frac{1}{4}\Leftrightarrow4x+4y=xy\Leftrightarrow4x+4y-xy=0\Leftrightarrow\)

\(\Leftrightarrow x.\left(4-y\right)-4.\left(4-y\right)=-16\Rightarrow\left(x-4\right).\left(4-y\right)=-16\)

vì x,y đóng vai trò như nhau nên \(\hept{\begin{cases}x-4=4\\4-y=-4\end{cases}\text{hoặc}\hept{\begin{cases}x-4=-4\\4-y=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=y=8\\x=y=0\left(\text{loại}\right)\end{cases}}}\)

bài còn lại t2

5 tháng 3 2019

cho t sửa tí

\(\left(x-4\right).\left(4-y\right)=16\Rightarrow\left(x-4\right).\left(y-4\right)=16\)

bn tự lập bảng

p/s: x,y ko đóng vai trò như nhau :(((

2 tháng 9 2016

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow x\left(3-y\right)+3y=0\)

\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)

\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)

\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)

=>x-3 và 3-y thuộc Ư(9)={1;3;9} (với x,y thuộc Z+)

Xét x-3=1 =>x=4 <=>3-y=9 => y=-6

Xét x-3=3 =>x=6 <=>3-y=3 =>y=0

Xét x-3=9 =>x=12 <=>3-y=1 =>y=2

Vậy....

2 tháng 9 2016

giúp tớ voiw

tham khảo https://olm.vn/hoi-dap/detail/2037215608.html

#Học-tốt

31 tháng 12 2019

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

=> \(\frac{xy+yz+xz}{xyz}=1\)

=> xy + yz + xz - xyz = 0 (1)

=> y(x + z) + xy(1 - z) = 0

=> y[x + z + (1 - z).x] = 0

=> \(\orbr{\begin{cases}y=0\left(\text{loại}\right)\\x+z+x\left(1-z\right)=0\end{cases}\Rightarrow x\left(2-z\right)+z=0\Rightarrow\left(x-1\right)\left(2-z\right)=-2}\)

Lại có \(x;z\inℕ^∗\Rightarrow\hept{\begin{cases}x-1\inℕ^∗\Leftrightarrow x>1\\2-z\inℕ^∗\Leftrightarrow z< 2\end{cases}}\)(2)

Từ (1) ta có : -2 = (-2).1  = (-1).2 

Lập bảng xét các trường hợp

x - 1-121-2
2 - z2-1-21
x0(loại)32-3(loại)
z0(loại)343
y\(y\in\varnothing\)321(loại)

Vậy các cặp (x;y;z) thỏa mãn là : (3;3;3) ; (2;4;2) ; (2;2;4) ; (4;2;2)

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)