Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 67845 – y = 29361
y = 678445 - 29361
y = 649034
b) y : 208 = 317
y = 317 x 208
y = 65936
a) 67845 – y = 29361
y = 678445 - 29361
y = 649034
b) y : 208 = 317
y = 317 x 208
y = 65936
a, ( y+2436 ) : 12 = 407
( y+2436 )=407x12
( y+2436 )=4884
y=4884-2436
y=2448
\(\frac{2}{7}:y=\frac{10}{21}.\frac{9}{14}\)
\(\frac{2}{7}:y=\frac{15}{49}\)
\(y=\frac{2}{7}:\frac{15}{49}\)
\(y=\frac{2}{7}.\frac{49}{15}\)
\(y=\frac{14}{15}\)
\(y-\frac{1}{3}=\frac{10}{21}:\frac{15}{28}\)
\(y-\frac{1}{3}=\frac{10}{21}.\frac{28}{15}\)
\(y-\frac{1}{3}=\frac{8}{9}\)
\(y=\frac{8}{9}+\frac{1}{3}\)
\(y=\frac{8}{9}+\frac{3}{9}\)
\(y=\frac{11}{9}\)
a) Ta có : \(y-\frac{1}{3}=\frac{10}{21}\div\frac{15}{28}\)
\(\Rightarrow\) \(y-\frac{1}{3}=\frac{8}{9}\)
\(\Rightarrow\) \(y\) \(=\frac{8}{9}+\frac{1}{3}\)
\(\Rightarrow\) \(y\) \(=\frac{11}{9}\)
Vậy \(y=\frac{11}{9}\)
b) Ta có : \(\frac{2}{7}\div y=\frac{10}{21}\times\frac{9}{14}\)
\(\Rightarrow\) \(\frac{2}{7}\div y=\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{2}{7}\div\frac{15}{49}\)
\(\Rightarrow\) \(y=\frac{14}{15}\)
Vậy \(y=\frac{14}{15}\)
Cbht !!!
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
b) y : 208 = 317
y = 317 x 208
y = 65936