Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{x-1}}\)
a) sai đề
a) \(\sqrt{2x+7}\)
Để \(\sqrt{2x+7}\) có nghĩa\(\Leftrightarrow\)2x+7\(\ge\)0
\(\Leftrightarrow\)2x\(\ge\)-7
\(\Leftrightarrow\)x\(\ge\)\(\dfrac{-7}{2}\)
b) \(\sqrt{-3x+4}\)
Để \(\sqrt{-3x+4}\) có nghĩa \(\Leftrightarrow\)-3x+4\(\ge\)0
\(\Leftrightarrow\)-3x\(\ge\)-4
\(\Leftrightarrow\)x\(\le\)\(\dfrac{4}{3}\)
c)\(\sqrt{\dfrac{1}{-1+x}}\)
Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa \(\Leftrightarrow\)\(\dfrac{1}{-1+x}\ge0\)
\(\Leftrightarrow\)-1+x>0
\(\Leftrightarrow\)x>1
d) \(\sqrt{1+x^2}\)
Ta có x2+1\(\ge\)1>0;\(\forall\)x\(\in R\)
Vậy x\(\in R\)
Để căn thức trên có nghĩa thì:
\(\sqrt{x-2}-1\ge0\)
<=> \(\sqrt{x-2}\ge1\)
<=> \(x-2\ge1\)
<=> \(x\ge3\)
Để \(\sqrt{2x}+7\) có nghĩa thì \(\Leftrightarrow\) 2x + 7 \(\ge\) 0
\(\Leftrightarrow\) 2x \(\ge\) -7
\(\Leftrightarrow\) x \(\ge\) \(\dfrac{-7}{2}\)
vậy khi x \(\ge\) \(\dfrac{-7}{2}\) thì \(\sqrt{2x}+7\) có nghĩa
\(\sqrt{2x}+7\)\(\sqrt{2x}+7\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)
\(\Leftrightarrow2\left|x\right|\ge1\)
\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)
\(\sqrt{\frac{x^2+1}{1-x}}\)có nghĩa khi
\(\frac{x^2+1}{1-x}\ge0\)
ta thấy x2+1\(\ge\)0 nên để
\(\frac{x^2+1}{1-x}\ge0\)thì 1-x\(\ge\)0
mà 1-x\(\ne\)0
1-x>0
<=>x>1
vậy x>1 thì căn thức có nghĩa
Ta có 2 x + 7 có nghĩa khi 2x+7 ≥ 0
2x + 7 ≥ 0 ⇔ 2x ≥ -7