Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để căn thức trên có nghĩa thì:
\(\sqrt{x-2}-1\ge0\)
<=> \(\sqrt{x-2}\ge1\)
<=> \(x-2\ge1\)
<=> \(x\ge3\)
\(\sqrt{\frac{x^2+1}{1-x}}\)có nghĩa khi
\(\frac{x^2+1}{1-x}\ge0\)
ta thấy x2+1\(\ge\)0 nên để
\(\frac{x^2+1}{1-x}\ge0\)thì 1-x\(\ge\)0
mà 1-x\(\ne\)0
1-x>0
<=>x>1
vậy x>1 thì căn thức có nghĩa
ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)
\(\Leftrightarrow2\left|x\right|\ge1\)
\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)
a) \(\sqrt{1-x^2}\) có nghĩa
\(\Leftrightarrow1-x^2\ge0\)
\(\Leftrightarrow\left(1-x\right)\left(x+1\right)\ge0\)
\(\Leftrightarrow-1\le x\le1\)
b) \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa
\(\Leftrightarrow\frac{1}{\left(x-5\right)^2}>0\)
\(\Leftrightarrow x\ne5\)
Vậy .............
a) Để \(\sqrt{1-x^2}\)có nghĩa
\(\Rightarrow\)\(1-x^2\ge0\)
\(\Leftrightarrow\)\(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)
Vì \(\sqrt{x}\ge0\forall x\)\(\Rightarrow\)\(\sqrt{x}+1\ge1>0\forall x\)
mà \(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)
\(\Rightarrow\)\(1-\sqrt{x}\ge0\)
\(\Leftrightarrow\)\(\sqrt{x}\le1\)
\(\Leftrightarrow\)\(x\le1\)
Vậy để \(\sqrt{1-x^2}\)có nghĩa thì \(x\le1\)
b) Để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa
\(\Rightarrow\)\(\sqrt{\frac{1}{\left(x-5\right)^2}}\ge0\)
\(\Leftrightarrow\)\(\frac{1}{\left|x-5\right|}\ge0\)
Vì \(1>0\)mà \(\frac{1}{\left|x-5\right|}\ge0\)
\(\Rightarrow\)\(\left|x-5\right|>0\)( vì là mẫu số )
\(\Leftrightarrow\)\(x-5>0\)
\(\Leftrightarrow\)\(x>5\)
Vậy để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa thì \(x>5\)
Đề bài là: Tìm x để biểu thức A có nghĩa: \(A=\sqrt{2-\sqrt{x-1}}\)
Biểu thức A có nghĩa <=> \(x-1>0\) và \(2-\sqrt{x-1}>0\)
<=> \(x>1\)và \(\sqrt{x-1}< 2\)
<=> \(x>1\) và \(x-1< 4\)
<=> \(x>1\) và \(x< 5\)
<=> \(1< x< 5\)
* Trả lời:
Để căn thức \(\sqrt{1+x^2}\) có nghĩa thì:
\(\sqrt{1+x^2\ge0}\)
\(\Leftrightarrow1+x^2\ge0\)
\(\Leftrightarrow x^2\le1\)
Vậy căn thức \(\sqrt{1+x^2}\) có nghĩa khi \(x^2\le1\)
Để : \(\sqrt{1+x^2}\) xác định , thì :
x2 + 1 ≥ 0 ( điều này luôn đúng ∀x)
Vậy , \(\sqrt{1+x^2}\) có nghĩa với mọi x
\(\frac{1}{\sqrt{x-1}}\)
a) sai đề
1 + x 2 có nghĩa khi 1 + x 2 ≥ 0
m à 1 + x 2 ≥ 0 v ớ i m ọ i x v ì x 2 ≥ 0 n ê n x 2 + 1 > 0