K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Để hàm số đồng biến trên R thì:

\(y'=(m+2)x^2+2mx+1\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi :

\(\left\{\begin{matrix} m+2> 0\\ \Delta'=m^2-m-2\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m> -2\\ (m+1)(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> -2\\ -1\leq m\leq 2\end{matrix}\right.\)

\(\Leftrightarrow -1\leq m\leq 2\)

Đáp án B

31 tháng 3 2017

a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1

Tập xác định: D = R

y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)

Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R

⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R

⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1

b) Hàm số có một cực đại và một cực tiểu

⇔ phương trình y’= 0 có hai nghiệm phân biệt

⇔ (m-1)2 > 0 ⇔ m≠1

c) f’’(x) = 6x – 6m > 6x

⇔ -6m > 0 ⇔ m < 0



DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

19 tháng 4 2016

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4

 

 

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
5 tháng 8 2020

3.

- Với \(m=1\Rightarrow f\left(x\right)=-9x\) nghịch biến trên R (ko thỏa mãn)

- Với \(m=-1\Rightarrow f\left(x\right)=9x\) đồng biến trên R (thỏa mãn)

- Với \(m\ne\pm1\)

\(f'\left(x\right)=6\left(m^2-1\right)x^2-9m\ge0;\forall x>1\)

TH1: \(\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)\le0\end{matrix}\right.\) \(\Rightarrow m< -1\)

TH2: \(\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)>0\\\sqrt{\frac{3m}{2\left(m^2-1\right)}}\le1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\3m\le2m^2-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\2m^2-3m-2\ge0\end{matrix}\right.\)

\(\Rightarrow m\ge2\)

Vậy \(\left[{}\begin{matrix}m\le-1\\m\ge2\end{matrix}\right.\)

NV
5 tháng 8 2020

2.

\(\Leftrightarrow y'=2m-\frac{x+1}{\sqrt{x^2+2x+11}}\ge0;\forall x\in R\)

\(\Leftrightarrow2m\ge\frac{x+1}{\sqrt{x^2+2x+11}}\)

\(\Leftrightarrow m\ge\frac{x+1}{2\sqrt{x^2+2x+11}}\)

\(\Leftrightarrow m\ge\max\limits_Rf\left(x\right)\) với \(f\left(x\right)=\frac{x+1}{2\sqrt{x^2+2x+11}}\)

Ta có: \(f'\left(x\right)=\frac{5}{\sqrt{\left(x^2+2x+11\right)^3}}>0;\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\frac{x+1}{2\sqrt{x^2+2x+11}}=\frac{1}{2}\)

\(\Rightarrow f\left(x\right)< \frac{1}{2};\forall x\in R\)

\(\Rightarrow m\ge\frac{1}{2}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

19 tháng 4 2016

Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)

Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)

và mọi x thuộc (-\(-\infty;2\) ] (*)

\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]

\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))

\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn  (-\(-\infty;2\) ]

\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]

\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên  (-\(-\infty;2\) ]

\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)

Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)

19 tháng 4 2016

Ta có : \(y'=4x^3-4\left(m-1\right)x\)

           \(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)

Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán

Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\)hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)

Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)

Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)