Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
a) \(\frac{1}{9}.27^n=3^n\)
\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)
\(\Leftrightarrow3^{3n-2}=3^n\)
\(\Leftrightarrow3n-2=n\)
\(\Leftrightarrow2n=2\)
\(\Leftrightarrow n=1\)
b)\(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^{2+n}=3^7\)
\(\Leftrightarrow2+n=7\)
\(\Leftrightarrow n=5\)
Bạn tham khảo tại đây nhé: Câu hỏi của Khánh Huyền⁀ᶦᵈᵒᶫ .
Chúc bạn học tốt!
a, \(\frac{1}{9}.27^n=3^n\Leftrightarrow\frac{1}{9}.3^{3.n}=3^n\Leftrightarrow\frac{1}{3^2}=3^n:3^{3n}\Leftrightarrow\frac{1}{3^2}=3^{n-3n}=3^{2n}\)
=> 3^2n . 3^2 = 1 => 3^( 2n + 2) = 3^0 => 2n + 2 = 0 => 2n = - 2 => n = - 1
b, 3^-2.3^4 .3^n = 3^ 7 => 3^ ( -2 + 4 + n) = 3^7 => 3^ (n+ 2) = 3^7 => n + 2 = 7 => n = 5
\(2^{-1}.2^n+4.2^n=9.2^5\)
\(2^n.2=9.2^5\)
\(\Rightarrow2^n=9.2^4\)
Ko có n nhé bn
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
a: \(\Leftrightarrow3^n:27^n=\dfrac{1}{9}\)
\(\Leftrightarrow\left(\dfrac{1}{9}\right)^n=\dfrac{1}{9}\)
hay n=1
b: \(\Leftrightarrow3^n\cdot3^2=3^8\)
=>n+2=8
hay n=6
c: \(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot2^5\)
\(\Leftrightarrow2^n=2^6\)
hay n=6
d: \(\Leftrightarrow8^n=512\)
hay n=3