K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Vì parabol (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên A(2; 0) thuộc (P).

Thay x = 0; y = 2 vào phương trình parabol ta được 0 = 4a + 6 – 2 hay a = -1

Chọn D.

AH
Akai Haruma
Giáo viên
30 tháng 9 2018

Lời giải:

Để 2 đths $y=ax+b$ tiếp xúc với cả 2 parabol đã cho thì 2 pt hoành độ giao điểm : \(\left\{\begin{matrix} ax+b=8-3x-2x^2\\ ax+b=2+9x-2x^2\end{matrix}\right.\) đều có nghiệm duy nhất

\(\Leftrightarrow \left\{\begin{matrix} 2x^2+x(a+3)+(b-8)=0(1)\\ 2x^2+x(a-9)+(b-2)=0(2)\end{matrix}\right.\) cả 2 đều có nghiệm duy nhất

Điều này xảy ra khi mà:
\(\Delta_1=(a+3)^2-8(b-8)=0\)

\(\Delta_2=(a-9)^2-8(b-2)=0\)

Trừ theo vế ta thu được \(24a-24=0\Rightarrow a=1\Rightarrow b=10\)

Vậy $(a,b)=(1,10)$

17 tháng 10 2018

Cảm ơn

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

15 tháng 11 2018

Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)

Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)

Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)

Từ (1), (2), (3) ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...

=> xem lại đề @@

15 tháng 11 2018

thank tao thấy vô lý lên mới đi hỏi

7 tháng 8 2019

bài dài quá bạn ơi nhìn qua mình cũng ngại làm đăng lẻ từng bài 1 thôi :(