K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

c) xét giá trị riêng

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+xyz+xyz\)

\(=xy\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)

\(=xy\left(x+y\right)+y^2z+xyz+yz^2+xz^2+x^2z+xyz\)

\(=xy\left(x+y\right)+yz\left(x+y\right)+z^2\left(x+y\right)+xz\left(x+y\right)\)

\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)\)

\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

3 tháng 9 2016

a) \(x^2-y^2-x-y\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)

13 tháng 12 2018

\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)

\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)

\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)

\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)

\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)

\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)

13 tháng 12 2018

\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)

\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)

\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)

27 tháng 6 2016

xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)

27 tháng 6 2016

\(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

\(\Leftrightarrow xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+xz\left(z+x\right)\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(\Leftrightarrow y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y\left(z+x\right)+zx\right)\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)\)

27 tháng 6 2016

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=xy.x+xy.y+yz.y+yz.z+xz.x+xz.z+2xyz\)

\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

15 tháng 6 2017

a) \(5x-5y+ax-ay\)

\(\Leftrightarrow\) \(\left(5x+ax\right)-\left(5y+ay\right)\)

\(\Leftrightarrow\) \(x\left(5+a\right)-y\left(5+a\right)\)

\(\Leftrightarrow\) \(\left(5+a\right)\left(x-y\right)\)

15 tháng 6 2017

b) \(a^3-a^2x-ay+xy\)

\(\Leftrightarrow\) \(a^2\left(a-x\right)-y\left(a-x\right)\)

\(\Leftrightarrow\) \(\left(a-x\right)\left(a^2-y\right)\)

22 tháng 6 2018

b  \(x^8y^8+x^4y^4+1=x^8y^8+2x^4y^4+1-x^4y^4=\left(x^4y^4\right)^2+2x^4y^4+1-\left(x^2y^2\right)^2\)

\(=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2=\left(x^4y^4-x^2y^2+1\right)\left(x^4y^4+x^2y^2+1\right)\)

c  \(x^2y+xy^2+xz^2+x^2z+y^2z+yz^2+2xyz=\left(x^2y+x^2z+xyz+xy^2\right)+\left(xz^2+yz^2+xyz+y^2z\right)\)

\(=x\left(xy+xz+yz+y^2\right)+z\left(xz+yz+xy+y^2\right)=\left(x+z\right)\left(xy+xz+yz+y^2\right)\)

\(=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

a  \(3xyz+x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)=3xyz+xy^2+xz^2+x^2y+yz^2+x^2z+y^2z\)

\(=\left(x^2y+x^2z+xyz\right)+\left(xy^2+xyz+y^2z\right)+\left(xyz+xz^2+yz^2\right)\)

\(=x\left(xy+xz+yz\right)+y\left(xy+xz+yz\right)+z\left(xy+xz+yz\right)=\left(x+y+z\right)\left(xy+xz+yz\right)\)

10 tháng 10 2018

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)

\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)

\(=\left(x+z\right)\left(x^2+y^2+yz+xz\right)\)

\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)

10 tháng 10 2018

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz.\)

\(=x^2y+xy^2+x^2z+xz^2+2xyz+yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y^2+z^2+2yz\right)+yz\left(y+z\right)\)

\(=x^2\left(y+z\right)+x\left(y+z\right)^2+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+z\right)+y\left(x+z\right)\right]=\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

15 tháng 11 2019

\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)2xyz\)

\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)

\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)

\(=\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)\)

\(=y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)\)

\(=\left(x+z\right)\left[y\left(x+y+z\right)+xz\right]=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)

\(=\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]\)

\(=\left(x+z\right)\left(z+y\right)\left(y+x\right)\)

\(=\left(x+y\right)\left(y+z\right)\left(z+x\right).\)

Phức tạp. Cs cách nào nhanh kkk?