Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\) ĐK \(\sqrt{6x^2-12x+7}\ge0\)
Đặt \(t=x^2-2x\left(t\ge0\right)\Leftrightarrow pt:-t+\sqrt{6t+7}=0\Leftrightarrow\sqrt{6t+7}=t\\ 6t+7-t^2=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(tm\right)\\t=-1\left(ktm\right)\end{array}\right.\)
Với \(t=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x=1\pm2\sqrt{2}\left(tm\right)\)
Vậy S={\(1\pm2\sqrt{2}\)}
a) \(x^2-\sqrt{2}x+\sqrt{5}x-\sqrt{10}=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}\right)+\sqrt{5}\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{5}\end{matrix}\right.\)
1) đk: \(x\ge1\)
Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)
\(\Leftrightarrow x-1=2x^2-2x\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
2) đk: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2=4x^2-4x+1\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)
=> PT vô nghiệm
3) đk: \(x\ge-1\)
Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)
\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)
\(\Leftrightarrow4\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Rightarrow x=0\)
4) đk: \(x\ge2\)
Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)
\(\Leftrightarrow x-2=x\left(x-2\right)\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
6) đk: \(x\ge-\frac{7}{5}\)
Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=2\)
\(\Leftrightarrow2x-3=2x-2\)
\(\Leftrightarrow0x=1\) vô lý
=> PT vô nghiệm
bạn giải theo delta nha :) mình vd một câu đó
\(1.x^2-11x+30=0\)
\(\Delta=\left(-11\right)^2-4.1.30=1>0\)
Do đó pt có 2 nghiệm phân biệt là:
\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
a) ĐKXĐ: \(x\geq -3\)
Ta có: \(\sqrt{x+3}=1+\sqrt{2}\)
\(\Rightarrow x+3=(1+\sqrt{2})^2\)
\(\Leftrightarrow x+3=1+2+2\sqrt{2}=3+2\sqrt{2}\)
\(\Leftrightarrow x=2\sqrt{2}\) (thỏa mãn)
Vậy \(x=2\sqrt{2}\)
b) ĐK: \(x\geq 0\)
Có: \(\sqrt{10+\sqrt{5x}}=\sqrt{6}+2\)
\(\Rightarrow 10+\sqrt{5x}=(\sqrt{6}+2)^2=6+4+4\sqrt{6}\)
\(\Leftrightarrow \sqrt{5x}=4\sqrt{6}=\sqrt{96}\)
\(\Leftrightarrow x=\frac{96}{5}\) (thỏa mãn)
Vậy.....
c) ĐK: \(x\geq 4\)
Ta có: \(\sqrt{x^2-16}-\sqrt{x-4}=0\)
\(\Leftrightarrow \sqrt{(x-4)(x+4)}-\sqrt{x-4}=0\)
\(\Leftrightarrow \sqrt{x-4}(\sqrt{x+4}-1)=0\)
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-4}=0\\ \sqrt{x+4}=1\end{matrix}\right. \Leftrightarrow \left[\begin{matrix} x=4\\ x=-3\end{matrix}\right.\) (loại $x=-3$ vì $x\geq 4$)
Vậy \(x=4\)
d) ĐK: \(x\ge 0\)
Ta có: \(x-6\sqrt{x}+5=0\)
\(\Leftrightarrow (x-\sqrt{x})-5(\sqrt{x}-1)=0\)
\(\Leftrightarrow \sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0\)
\(\Leftrightarrow (\sqrt{x}-5)(\sqrt{x}-1)=0\)
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x}-5=0\\ \sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=25\\ x=1\end{matrix}\right.\) (đều t/m)
e) ĐK: \(x\geq 3\)
\(\sqrt{x-3}\geq 7\)
\(\Leftrightarrow x-3\geq 49\)
\(\Leftrightarrow x\geq 52\). Kết hợp với ĐK suy ra \(x\geq 52\)
f) ĐK: \(x\geq -1\)
Ta có: \(\sqrt{x+1}\leq 3\)
\(\Leftrightarrow x+1\leq 9\)
\(\Leftrightarrow x\leq 8\)
Kết hợp với ĐK suy ra \(-1\leq x\leq 8\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
1. \(x^3-6x^2+10x-4=0\)
<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
<=> \(\left(x-2\right)\left(x^2-4x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)
Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)
=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)
\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)
1) Ta có: \(x^3-6x^2+10x-4=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)
+ \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
+ \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=2\)
\(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,5858;2;3,4142\right\}\)
a) Ta có: \(3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\)
\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{2}{3}\right\}\)
b) Ta có: \(7x^2-5x-2=0\)
\(\Leftrightarrow7x^2-7x+2x-2=0\)
\(\Leftrightarrow7x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{-2}{7}\right\}\)
c) Ta có: \(\left(x^2+x\right)^2+5\left(x^2+x\right)+6=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+2\left(x^2+x\right)+3\left(x^2+x\right)+6=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+2\right)+3\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x^2+x+2\right)\left(x^2+x+3\right)=0\)(1)
Ta có: \(x^2+x+2\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\forall x\)
hay \(x^2+x+2\ne0\forall x\)(2)
Ta có: \(x^2+x+3\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
hay \(x^2+x+3\ne0\forall x\)(3)
Từ (1), (2) và (3) suy ra \(x\in\varnothing\)
Vậy: Tập nghiệm \(S=\varnothing\)
d) Ta có: \(x-7\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{7}{2}+\frac{49}{4}-\frac{49}{4}-\frac{36}{4}=0\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{7}{2}\right)^2=\frac{85}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\frac{7}{2}=\frac{\sqrt{85}}{2}\\\sqrt{x}-\frac{7}{2}=-\frac{\sqrt{85}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{\sqrt{85}}{2}+\frac{7}{2}=\frac{\sqrt{85}+7}{2}\\\sqrt{x}=\frac{-\sqrt{85}}{2}+\frac{7}{2}=\frac{7-\sqrt{85}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\left(\frac{\sqrt{85}+7}{2}\right)^2=\frac{67+7\sqrt{85}}{2}\\x=\left(\frac{7-\sqrt{85}}{2}\right)^2=\frac{67-7\sqrt{85}}{2}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{\frac{67+7\sqrt{85}}{2};\frac{67-7\sqrt{85}}{2}\right\}\)
e) Ta có: \(x-5\sqrt{x}+4=0\)
\(\Leftrightarrow x-\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-4\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\)
Vậy: Tập nghiệm S={1;16}
tôi có mẹo lên trang tìm kiếm tìm đi
\(\sqrt{5x+2}-\sqrt{x+6}=0\Leftrightarrow\sqrt{5x+2}=\sqrt{x+6}\)đk : x > = -2/5
\(\Leftrightarrow5x+2=x+6\Leftrightarrow4x=4\Leftrightarrow x=1\)(tm)