Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-1}+x^2-1=0\)DK: \(x\ge1\)\(\Leftrightarrow\sqrt{x-1}\left[1+\left(x+1\right)\sqrt{x-1}\right]=0\Leftrightarrow\)
*\(\sqrt{x-1}=0=>x=1\)
*\(1+\left(x+1\right)\sqrt{x-1}=0\Leftrightarrow vonghiem\)
KL: x=1
b)
\(\sqrt{x^2+3}=!x^2+1!\) đặt x^2+1=t=> t>=1
\(\sqrt{t+2}=t\Leftrightarrow t^2-t-2=0=>t=-1\left(hoacloai\right)\&t=2\)
=>\(x=+-1\)
c)
\(x^3+4=4x\sqrt{x}\) dk x>=0
\(x^3+4=4\sqrt{x^3}\) \(Dat..\sqrt{x^3}=t=>t\ge0\)
t^2+4=4t<=>t^2-4t+4=0=> t=2=> x=\(\sqrt[3]{4}\)
nếu bạn muốn minh trả lời tiếp hay gui link truc tiep den minh.
xem bài và kiểm tra lại số liệu rất có thể sai lỗi số học.
sao không thấy ai giải/
thấy có loi roi vào copy pass linh tinh
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Tiếp =))
c)Áp dụng BĐT AM-GM ta có:
\(x\sqrt{y-1}\le\frac{x\left(y-1+1\right)}{2}=\frac{xy}{2}\)
\(2y\sqrt{x-1}\le\frac{2y\left(x-1+1\right)}{2}=\frac{2xy}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=x\sqrt{y-1}+2y\sqrt{x-1}\le\frac{3xy}{2}=VP\)
Nên xảy ra khi \(x=y\) thay vào giải ra có: x=y=2
d)\(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
\(pt\Leftrightarrow\sqrt{2x^2+x+1}-2+\sqrt{x^2-x+1}-1=3x-3\)
\(\Leftrightarrow\frac{2x^2+x+1-4}{\sqrt{2x^2+x+1}+2}+\frac{x^2-x+1-1}{\sqrt{x^2-x+1}+1}=3\left(x-1\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x\left(x-1\right)}{\sqrt{x^2-x+1}+1}-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{\left(2x+3\right)}{\sqrt{2x^2+x+1}+2}+\frac{x}{\sqrt{x^2-x+1}+1}-3\right)=0\)
pt trong ngoặc vn nên x=1
Tắm đã làm nốt cho :))
Chả ai giúp t gank =)), mà lần sau đăng ít 1 thôi đăng lắm thế này nhìn nản cmn luôn ấy
a)\(\sqrt{x^2+x-5}+\sqrt{-x^2+x+3}=x^2-3x+4\)
\(pt\Leftrightarrow\sqrt{x^2+x-5}-1+\sqrt{-x^2+x+3}-1=x^2-3x+2\)
\(\Leftrightarrow\frac{x^2+x-5-1}{\sqrt{x^2+x-5}+1}+\frac{-x^2+x+3-1}{\sqrt{-x^2+x+3}+1}=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x+3\right)}{\sqrt{x^2+x-5}+1}+\frac{-\left(x-2\right)\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{\left(x+3\right)}{\sqrt{x^2+x-5}+1}-\frac{\left(x+1\right)}{\sqrt{-x^2+x+3}+1}-\left(x-1\right)\right]=0\)
Pt trong ngoặc <0 nên x=2 là nghiệm
b)\(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)\
Đk:\(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\sqrt{2x^3-x^2+x+1}-\left(2x+1\right)\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{x}{2}+1-\left(2x+1\right)=\frac{2x^3-x^2+x+1-\left(2x+1\right)^2}{\sqrt{2x^3-x^2+x+1}+2x+1}\)
\(\Leftrightarrow\frac{x^2-3x}{2}-\frac{2x^3-5x^2-3x}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)
\(\Leftrightarrow\frac{x\left(x-3\right)}{2}-\frac{x\left(x-3\right)\left(2x+1\right)}{\sqrt{2x^3-x^2+x+1}+2x+1}=0\)
\(\Leftrightarrow x\left(x-3\right)\left(\frac{1}{2}-\frac{2x+1}{\sqrt{2x^3-x^2+x+1}+2x+1}\right)=0\)
Pt trong ngoặc vô nghiệm nốt nên
\(\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
1. hiểu rồi k ngày đăng cầu mới--->trả lời ngay
2. chưa hiểu hỏi bải ngày--> nhận lời giải thích luôn
3.chưa k quay về câu 1
là sao vậy?