Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập xác định : \(D=R\)
Gọi tiếp điểm là \(M\left(x_0;y_0\right);y'=-4x^3-x\)
Hệ số gọc của \(\Delta\) là \(k=y'\left(x_0\right)\)
a) Vì \(\Delta\perp d\) nên \(\frac{1}{5}.k=-1\Leftrightarrow k=-5\Leftrightarrow-4x^3_0-x_0=-5\Leftrightarrow x_0=1\)
\(x_0=1\Rightarrow y\left(x_0\right)=\frac{9}{2}\Rightarrow\Delta:y=-5\left(x-1\right)+\frac{9}{2}\Leftrightarrow\Delta:y=-5x+\frac{19}{2}\)
Vậy tiếp tuyến vuông góc với d của (C) là \(\Delta:y=-5x+\frac{19}{2}\)
b) Phân giác của 2 đường \(d_1;d_2\) là :
\(\frac{\left|2x-y+2\right|}{\sqrt{5}}=\frac{\left|x-2y+3\right|}{\sqrt{5}}\Leftrightarrow\left[\begin{array}{nghiempt}y=-x+1\\y=x+\frac{5}{3}\end{array}\right.\)
Từ giả thiết suy ra \(\Delta\) vuông góc với các đường phân giác của \(d_1;d_2\) nên hệ số góc của \(\Delta\) là \(\pm1\) ( \(\Delta\) không đi qua giao điểm của \(d_1;d_2\))
* Trường hợp 1: Với k = 1 ta có \(-4x_0^3-x_0=1\Leftrightarrow x_0=-\frac{1}{2}\Rightarrow y_0=\frac{93}{16}\)
Suy ra \(\Delta:y-\frac{93}{16}=x+\frac{1}{2}\) hay \(y=x+\frac{101}{16}\)
* Trường hợp 2: Với k = -1 ta có \(-4x_0^3-4x_0=-1\Leftrightarrow x_0=\frac{1}{2}\)
Suy ra \(\Delta:y-\frac{93}{16}=x-\frac{1}{2}\) hay \(y=x+\frac{85}{16}\)
Đường thẳng d có vectơ chỉ phương \(\overrightarrow{u}\left(-2;2;1\right)\) và đi qua \(M\left(3;6;1\right)\)
Đường thẳng AB có vectơ chỉ phương \(\overrightarrow{AB}\left(-4;-2;5\right)\) và đi qua \(\overrightarrow{AM}\left(-1;4;-1\right)\)
Ta có \(\left[\overrightarrow{u},\overrightarrow{AB}\right]=\left(12;6;12\right)\Rightarrow\left[\overrightarrow{u},\overrightarrow{AB}\right].\overrightarrow{AM}=-12+24-12=0\)
Vậy ta có AB và d đồng phẳng.
\(C\in d\Rightarrow C\left(3-2t;6+2t;1+t\right)\)
Tam giác ABC cân tại A \(\Leftrightarrow AB=AC\)
\(\Leftrightarrow\left(1+2t\right)^2+\left(4+2t\right)^2+\left(1-t\right)^2=45\)
\(\Leftrightarrow9t^2-18t-27=0\)
\(\Leftrightarrow t=1\) hoặc \(t=-3\)
Vậy \(C\left(1;8;2\right)\) hoặc \(C\left(9;0;-2\right)\)
Câu 1:
\(\overrightarrow{MN}=\left(3;-1;-4\right)\Rightarrow\) pt mặt phẳng trung trực của MN:
\(3\left(x-\frac{7}{2}\right)-\left(y-\frac{1}{2}\right)-4\left(z-2\right)=0\Leftrightarrow3x-y-4z-2=0\)
\(\overrightarrow{PN}=\left(4;3;-1\right)\Rightarrow\) pt mp trung trực PN: \(4x+3y-z-7=0\)
\(\Rightarrow\) Phương trình đường thẳng giao tuyến của 2 mp trên: \(\left\{{}\begin{matrix}x=1+t\\y=1-t\\z=t\end{matrix}\right.\)
\(\Rightarrow I\left(1+c;1-c;c\right)\) \(\Rightarrow\overrightarrow{NI}=\left(c-4;1-c;c\right)\)
\(d\left(I;\left(Oyz\right)\right)=IN\Rightarrow\left|1+c\right|=\sqrt{\left(c-4\right)^2+\left(1-c\right)^2+c^2}\)
\(\Leftrightarrow\left(c+1\right)^2=3c^2-10c+17\)
\(\Leftrightarrow2c^2-12c+16=0\Rightarrow\left[{}\begin{matrix}c=4\\c=2\end{matrix}\right.\)
Mà \(a+b+c< 5\Rightarrow\left(1+c\right)+\left(1-c\right)+c< 5\Rightarrow c< 3\Rightarrow c=2\)
Câu 2:
Phương trình tham số d: \(\left\{{}\begin{matrix}x=-1+2t\\y=t\\z=2-t\end{matrix}\right.\) \(\Rightarrow C\left(-1+2n;n;2-n\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(2n;n-3;1-n\right)\\\overrightarrow{AB}=\left(1;-1;-2\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(3n-7;-3n-1;3n-3\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right]\right|=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(3n-7\right)^2+\left(-3n-1\right)^2+\left(3n-3\right)^2}=4\sqrt{2}\)
\(\Leftrightarrow27n^2-54n+27=0\Rightarrow n=1\)
\(\Rightarrow C\left(1;1;1\right)\Rightarrow m+n+p=3\)
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
Chọn C
Gọi M là trung điểm của AC. Khi đó M thuộc vào đường trung tuyến kẻ từ B của tam giác ABC.
Giả sử M (3 – t ; 3 + 2t ; 2 – t) ∈ Δ suy ra C (4-2t; 3+4t; 1-2t).
Mà C thuộc và đường phân giác trong d của góc C nên ta có:
Suy ra C (4; 3; 1).
Gọi H là hình chiếu vuông góc của A trên đường phân giác trong d.
Suy ra H (2+2t';4-t';2-t')
Ta có ó 2. 2t'+ (-1) (1-t')+ (-1) (-1-t')=0 ó 4t'-1+t'+1+t'=0 ó t'=0
=> H (2;4;2).
Gọi A' đối xứng với A qua đường phân giác trong d.
Suy ra A’ ∈ (BC) và A' (2;5;1). Khi đó là vectơ chỉ phương của đường thẳng BC.
Đáp án C
Phương pháp:
+) Tam giác ABC có trung tuyến BM và phân giác CD.
+) Tham số hóa tọa độ điểm M là trung điểm của AC, tìm tọa độ điểm C theo tọa độ điểm M.
+) Tìm tọa độ điểm N đối xứng với M qua CD =>N ∈ BC => Phương trình đường thẳng BC
+) Tìm tọa độ điểm B=BM ∩ BC, khi đó mọi vector cùng phương với AB đều là VTCP của AB.
Cách giải:
Tam giác ABC có trung tuyến BM và phân giác CD.
Gọi M(30t; 3+2t;2-t) ∈ BM là trung điểm của AC ta có
Gọi H là hình chiếu của M trên CD ta có
Gọi N là điểm đối xứng với M qua CD => H là trung điểm của MN
Do CD là phân giác của góc C nên N ∈ BC, do đó phương trình đường thẳng CB là
Xét hệ phương trình
=> B(2;5;1)
Chọn A
Gọi M(3-t; 3+2t; 2-t) là trung điểm cạnh AC, khi đó C(4-2t; 3+4t; 1-2t)
Mặt khác C thuộc đường phân giác trong góc C là tam giác nên
Gọi A' đối xứng với A qua phân giác trong góc C => A' ∈ CB
Mặt phẳng α qua A và vuông góc với đường phân giác trong góc C:
Mặt khác : H là trung điểm AA' nên A'(2;5;1)
Phương trình đường thẳng BC qua A', Clà: