Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C D B' A' D' C' M K O a a
a. Từ giả thiết ta có :
\(C\left(a;a;0\right);C'\left(a;a;b\right);D'\left(0;a;b\right);B'\left(a;0;b\right)\)
Vì M là trung điểm của CC' nên \(M=\left(a;a;\frac{b}{2}\right)\)
Ta có :
\(\overrightarrow{BD}=\left(-a;a;0\right)\)
\(\overrightarrow{BA}=\left(-a;0;b\right)\)
\(\overrightarrow{BM}=\left(0;a;\frac{b}{2}\right)\)
Vì thế \(\left[\overrightarrow{BD};\overrightarrow{BA'}\right]=\left(\left|\begin{matrix}a&0\\0&b\end{matrix}\right|;\left|\begin{matrix}0&-a\\b&-a\end{matrix}\right|;\left|\begin{matrix}-a&a\\-a&0\end{matrix}\right|\right)\)
\(=\left(ab,ab,a^2\right)\)
Vậy \(V_{BDa'M}=\frac{1}{6}\left|\left[\overrightarrow{BD};\overrightarrow{BA'}\right].\overrightarrow{BM}\right|=\frac{1}{6}\left|a^2b+\frac{a^2b}{2}\right|=\frac{a^2b}{4}\)
b. Gọi K là trung điểm của BD. Do \(A'B=A'D\Rightarrow A'K\perp BD\)
Lại có \(MB=MD\Rightarrow MK\perp BD\)
Vậy \(\widehat{A'KM}=90^0\)
\(\Leftrightarrow\overrightarrow{A'K}.\overrightarrow{MK}=0\)
Ta có :
\(K=\left(\frac{a}{2};\frac{a}{2};0\right)\) do đó :
\(\overrightarrow{A'K}=\left(\frac{a}{2};\frac{a}{2};-b\right)\)
\(\overrightarrow{MK}=\left(-\frac{a}{2};\frac{-a}{2};\frac{-b}{2}\right)\)
Vậy \(\left(1\right)\Leftrightarrow-\frac{a^2}{4}-\frac{a^2}{4}+\frac{b^2}{2}=0\)
\(\Leftrightarrow b^2=a^2\)
\(\Leftrightarrow\frac{a}{b}=1\)
Do (a>0,b>0) vì thế \(\left(A'BD\right)\perp\left(MBD\right)\Leftrightarrow\frac{a}{b}=1\)
Lời giải:
Chọn điểm $I$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}=0\)
\(\Leftrightarrow (1-x_I, 2-y_I, 1-z_I)-2(2-x_I, -1-y_I, 3-z_I)=0\)
\(\Rightarrow \left\{\begin{matrix} 1-x_I-2(2-x_I)=0\\ 2-y_I-2(-1-y_I)=0\\ 1-z_I-2(3-z_I)=0\end{matrix}\right.\Rightarrow I(3,-4, 5)\)
Có:
\(MA^2-2MB^2=(\overrightarrow {MI}+\overrightarrow{IA})^2-2(\overrightarrow{MI}+\overrightarrow{IB})^2\)
\(=-MI^2+IA^2-2IB^2+2\overrightarrow{MI}(\overrightarrow{IA}-2\overrightarrow{IB})\)
\(=-MI^2+IA^2-2IB^2\)
Do đó để \(MA^2-2MB^2\) max thì \(MI^2\) min. Do đó $M$ là hình chiếu vuông góc của $I$ xuống mặt phẳng $Oxy$
Gọi d là đường thẳng đi qua $I$ và vuông góc với (Oxy)
Khi đó: \(d:\left\{\begin{matrix} x=3\\ y=-4\\ z=5+t\end{matrix}\right.\)
$M$ thuộc d và $(Oxy)$ thì ta có thể suy ra ngay đáp án D
Mặt cầu tâm \(I\left(3;-2;1\right)\)
Mặt phẳng (P) nhận \(\left(1;2;2\right)\) là 1 vtpt
Gọi d là đường thẳng qua I và vuông góc (P) \(\Rightarrow\) M là giao điểm của d với mặt cầu (giao điểm nằm giữa I và H với H là giao của d và (P))
Phương trình tham số d: \(\left\{{}\begin{matrix}x=3+t\\y=-2+2t\\z=1+2t\end{matrix}\right.\)
H là giao d và (P) nên tọa độ thỏa mãn:
\(3+t+2\left(-2+2t\right)+2\left(1+2t\right)+11=0\Rightarrow t=-\frac{4}{3}\) \(\Rightarrow H\left(\frac{5}{3};-\frac{14}{3};-\frac{5}{3}\right)\)
M là giao d và (S) nên tọa độ thỏa mãn:
\(\left(3+t\right)^2+\left(-2+2t\right)^2+\left(1+2t\right)^2-6\left(3+t\right)+4\left(-2+2t\right)-2\left(1+2t\right)+5=0\)
\(\Leftrightarrow9t^2-9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;0;3\right)\\M\left(2;-4;-1\right)\end{matrix}\right.\)
M nằm giữa I và H nên \(M\left(2;-4;-1\right)\) là điểm cần tìm
4.
(P) nhận \(\left(2;-1;-1\right)\) là 1 vtpt
Phương trình (d) qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=2+2t\\y=1-t\\z=4-t\end{matrix}\right.\)
Hình chiếu A' của A lên (P) là giao điểm d và (P) nên tọa độ thỏa mãn:
\(2\left(2+2t\right)-\left(1-t\right)-\left(4-t\right)+7=0\Rightarrow t=-1\)
\(\Rightarrow A'\left(0;2;5\right)\)
5.
Pt hoành độ giao điểm: \(lnx=0\Rightarrow x=1\)
Diện tích: \(S=\int\limits^e_1lnxdx-\int\limits^1_{\frac{1}{e}}lnxdx\)
Xét \(I=\int lnxdx\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.lnx-\int dx=xlnx-x\)
\(\Rightarrow S=\left(xlnx-x\right)|^e_1-\left(xlnx-x\right)|^1_{\frac{1}{e}}=1-\left(-1+\frac{2}{e}\right)=2-\frac{2}{e}\)
6.
Pt đường thẳng bị thiếu mẫu số đầu tiên
7.
Đề bài thiếu
1.
\(\left\{{}\begin{matrix}z_1+z_2=6\\z_1z_2=\left(3+2i\right)\left(3-2i\right)=13\end{matrix}\right.\)
\(\Rightarrow z_1;z_2\) là nghiệm của pt: \(z^2-6z+13=0\)
2.
\(\overrightarrow{BC}=\left(1;-2;-5\right)\)
Phương trình (P):
\(1\left(x-2\right)-2\left(y-1\right)-5\left(z+1\right)=0\)
\(\Leftrightarrow x-2y-5z-5=0\)
3.
\(I=\int\limits^0_{-1}x^2\left(x^2+2x+1\right)dx=\int\limits^0_{-1}\left(x^4+2x^3+x^2\right)dx=\left(\frac{1}{5}x^5+\frac{1}{2}x^4+\frac{1}{3}x^2\right)|^0_{-1}=\frac{1}{30}\)