Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
Bài giải:
Ta có ˆA−ˆD=A^−D^=200; ˆA+ˆD=A^+D=^ 1800
Từ ˆA−ˆD=A^−D^=200
=> ˆAA^= 200 +ˆDD^
Nên ˆA+ˆD=A^+D^= 200 + ˆDD^ +ˆDD^=200 +2 ˆDD^ =1800
=> 2ˆDD^=1600 => ˆDD^= 800
Thay ˆDD^= 800 vào ˆAA^= 200 +ˆDD^ ta được ˆAA^=200 + 800 = 1000
Lại có ˆB=2ˆCB^=2C^ ; ˆB+ˆC=B^+C^=1800
nên 2ˆC+
Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )
Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:
\(\widehat{A}=20^o+80^o=100^o\)
Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )
và \(\widehat{B}=2.\widehat{C}\)
nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)
Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)
Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)
Hình vẽ ;
A D B C E 60 o
a, Chứng minh tứ giác ABCD là hình thang cân .
Xét tam giác ADC ( góc ACD = 90 độ do AC\(⊥\)CD-gt) ta có :
\(\widehat{D}+\widehat{CAD}=90^o\)
\(\Rightarrow\widehat{CAD}=90^o-\widehat{D}=90^o-60^o=30^o\)
mà \(\widehat{CAD}=\widehat{BAC}\left(gt\right)\Rightarrow\widehat{BAC}=30^o\)
Ta có : \(\widehat{BAD}=\widehat{BAC}+\widehat{CAD}=30^o+30^o=60^o\)
Xét hình thang ABCD , ta có :
\(\widehat{BAD}=\widehat{D}=60^o\)
\(\Rightarrow\)tứ giác ABCD là hình thang cân.
b, Tính AD.
Kéo dài AB và DC cắt nhau tại E .
Xét tam giác AED , ta có : \(\widehat{BAC}=\widehat{CAD}\left(gt\right)\)
\(AC⊥CD\)(gt)
=> tam giác AED là tam giác cân .
mà góc D = 60 độ (gt)
=> tam giác AED là tam giác đều
=>\(\hept{\begin{cases}AB=CD=\frac{1}{2}AD\left(1\right)\\CE=CD\end{cases}}\)
Xét tam giác ADE , ta có :
BC//AD( do ABCD là hình thang )
CE=CD( cmt)
=> BC là đường trung bình của tam giác ADE
=>\(BC=\frac{1}{2}AD\left(2\right)\)
Từ (1) và (2) => BC=CD=AB=\(\frac{1}{2}.AD\)
Theo giả thiết , ta có :
AB+BC+CD+AD=20
=>\(\frac{1}{2}AD+\frac{1}{2}AD+\frac{1}{2}AD+AD=20\)
=>\(\frac{5}{2}AD=20\Rightarrow AD=8\left(cm\right)\)
Nên nhớ hình vẽ chỉ mang tính minh họa cho bài làm nên ko được đẹp lắm đâu các bạn thông cảm cho.
Trong bài mk làm hơi tắt có j hk hiểu nhắn tin hỏi mk .
A B C D
a)
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)
\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)
\(\Leftrightarrow3\left(C+D\right)=720^o\)
\(\Leftrightarrow C+D=240^o\)
\(\Leftrightarrow A+B=120\)
Trong hình thang ABCD, ta có A và C là hai góc đối nhau.
- Trường hợp A và B là 2 góc kề với cạnh bên.
⇒ BC // AD
∠ A + ∠ B = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ B = 180 0 - ∠ A = 180 0 – 60 0 = 120 0
∠ C + ∠ D = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ D = 180 0 - ∠ C = 180 0 – 130 0 = 50 0
- Trường hợp A và D là 2 góc kề với cạnh bên.
⇒ AB // CD
∠ A + ∠ D = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ D = 180 0 - ∠ A = 180 0 – 60 0 = 120 0
∠ C + ∠ B = 180 0 (hai góc trong cùng phía bù nhau)
⇒ ∠ B = 180 0 - ∠ C = 180 0 – 130 0 = 50 0