Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)
Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)
Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)
Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)
\(\Leftrightarrow\left(x-y\right)^2\le4\)
Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)
Chứng minh tương tự ta cũng có :
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng theo vế của 3 bất đẳng thức trên ta được :
\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Hay ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều
a)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra:
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm.
a) (hình bên)
Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:
β = α - , x = r cos α, y = r sin α
Suy ra
x' = r cos β = r cos ( α - ) = r sinα = y
y' = r sin β = r sin ( α - ) = - r cos α= - x
Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự
b) ( hình 1.26)
Gọi tam giác là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó (2;-3), (5;-4), (3;-1) là đáp số cần tìm
Gọi G' là trọng tâm tam giác A'B'C' thì G' là ảnh của G qua phép vị tự tâm I tỉ số k
Do G' thuộc trục hoàn nên tọa độ có dạng \(G'\left(a;0\right)\)
Áp dụng công thức tọa độ phép vị tự:
\(\left\{{}\begin{matrix}a-1=k\left(4-1\right)\\0+1=k\left(2+1\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=3k+1\\k=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow S_{A'B'C'}=\left|k\right|.S_{ABC}=\frac{1}{3}.36=12\)
Chọn D
Gọi I là trung điểm của BC => I(0; 0; 1)
=> I là hình chiếu vuông góc của A 1 trên Oz
(do tam giác ABC đều)
Trường hợp 1: c= 0 (loại)
Trường hợp 2: c =2
Chọn VTCP của A 1 C là