Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính E(300)=300/log2(300), E(90000)=90000/log2(90000)
Vì độ hiệu quả tỉ lệ thuận với thời gian thực hiện
nên ta có tỉ số 0,02/E(300)=x/E(90000) (x là giá trị cần tìm).
Từ đó tính được x=3
a) \(\left(x-5\right)^2+\left(y+3\right)^2+\left(z-7\right)^2=4\)
b) \(\left(x-4\right)^2+\left(y+4\right)^2+\left(z-2\right)^2=36\)
c) \(\left(x-3\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=18\)
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
Khoảng cách từ A đến mặt phẳng (P) là :
\(h=d_{\left(A,\left(P\right)\right)}=\frac{\left|1.2+\left(-2\right).\left(-2\right)+2.1+5\right|}{\sqrt{1^2+\left(-2\right)^2+2^2}}=4\)
Gọi r là bán kính của đường tròn thiết diện thì ta có \(2\pi r=6\pi\Rightarrow r=3\)
Gọi R là bán kính mặt cầu cần tìm, ta có : \(R^2=h^2+r^2=4^2+3^2=25\)
Vậy phương trình mặt cầu cần tìm là : \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=25\)
Bài 1: Thực hiện phép tính
a)136 - (2 . 52 + 23 . 3)
= 136 - (104 + 69)
= 136 - 173
= -37
b) (-243) + (-12) + (+243) + (-38) + (10)
= [(-243) + (+243)] + (-12) + (-38) + (10)
= 0 + (-40)
= -40
Bài 2 : Tìm x ∈ N, biết:
a) 6 . (x-81) = 54
⇒ x - 81 = 54 : 6
⇒ x - 81 = 9
x = 81 + 9
x = 90
Vậy : x = 90
b) 18 - (x-4) = 32
⇒ x - 4 = 18 - 32
⇒ x - 4 = -14
x = -14 + 4
x = -10
Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???
1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)
Khoản cách từ M đến \(d_1\) là:
\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)
Khoản cách từ M đến \(d_2\) là:
\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)
Theo đề bài ta có:
\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)
\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)
\(\Leftrightarrow a^2+10a-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
C K O E H F B A D
Trên \(\Delta\) lấy điểm D sao cho à D, A nằm khác phía nhau so với B. Gọi E là giao điểm của các đường thẳng KA và OC; Gọi F là giao điểm của các đường thẳng KB và OD
Vì K là tâm đường tròn bàng tiếp góc O của tam giác OAB nên KE là phân giác của góc OAC. Mà OAC là tam giác cân tại A ( do OA = AC, theo gt) nên suy ra KE cũng là đường trung trục của OC. Do đó, E là trung điểm của OC và KC=KO
Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD=KO
Suy ra tam giác CKD cân tại K. Do đó, hạ KH vuông góc với \(\Delta\) , ta có H là trung điểm của CD. Như vậy :
+ A là giao của \(\Delta\) và đường trung trực \(d_1\) của đoạn OC (1)
+ B là giao của \(\Delta\) và đường trung trực \(d_2\) của đoạn OD, với D là điểm đối xứng của C qua H là hình chiếu vuông góc của K trên \(\Delta\) (2)
Vì \(C\in\Delta\) và có hoành độ \(x_0=\frac{24}{5}\) nên gọi \(y_0\) là tung độ của C, ta có :
\(2.\frac{24}{5}+3y_0-12=0\) suy ra \(y_0=-\frac{12}{5}\)
Từ đó, trung điểm E của OC có tọa độ là \(\left(\frac{12}{5};-\frac{6}{5}\right)\) và đường thẳng OC có phương trình \(x+2y=0\)
Suy ra phương trình của \(d_1\) là \(2x-y-6=0\)
Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\2x-y-6=0\end{cases}\)
Giải hệ ta có \(A=\left(3;0\right)\)
Để tìm tọa độ đỉnh B ta làm như sau :
Gọi d là đường thẳng đi qua K(6;6) và vuông góc với \(\Delta\).
Ta có phương trình của d là : \(3x-4y+6=0\). Từ đây, do H là giao điểm của \(\Delta\). và d nên tọa độ của H là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\3x-4y+6=0\end{cases}\)
Giải hệ trên, ta được \(H=\left(\frac{6}{5};\frac{12}{5}\right)\) suy ta \(D=\left(-\frac{12}{5};\frac{26}{5}\right)\)
Do đó, trung điểm F của OD có tọa độ là \(\left(-\frac{6}{5};\frac{18}{5}\right)\) và đường thẳng OD có phương trình \(3x+y=0\)
Suy ra phương trình của \(d_2\) là \(x-3y+12=0\)
Do đó, theo (2), tọa độ B là nghiệm của hệ phương trình :
\(\begin{cases}4x+3y-12=0\\x-3y+12=0\end{cases}\)
Giải hệ trên ta được B=(0;4)