K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

Phương trình nhận x = -2 làm nghiệm nên ta có:

4 - 2 2  – 25 + k 2  + 4k(-2) = 0

⇔ 16 – 25 +  k 2 – 8k = 0

⇔  k 2  – 8k – 9 = 0

⇔  k 2  – 9k + k – 9 = 0

⇔ k(k – 9) + (k – 9) = 0

⇔ (k + 1)(k – 9) = 0

⇔ k + 1 = 0 hoặc k – 9 = 0

k + 1 = 0 ⇔ k = -1

k – 9 = 0 ⇔ k = 9

Vậy k = -1 hoặc k = 9 thì phương trình nhận x = -2 làm nghiệm.

25 tháng 4 2017

a) Thay k = 0 vào ta có pt: 9x- 25 = 0 nên x = 5/3 hoặc x = -5/3

b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k+ 2k = 0 tương đương - k+ 2k - 16 =0

Mặt khác - k+ 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)+ 15] < 0 

Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán

14 tháng 6 2017

a,Với k =0 thì biểu thức bằng:​

4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)

b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)

hay :\(4x^3-12x=16\)

\(4x\left(x^2-3\right)=16\)

\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)

hay \(x^3-3x=4\)

nên nếu với x là một số tự nhiên thì phương trình vô nghiệm

21 tháng 6 2017

khó quá nhỉ

4 tháng 3 2020

-4kx + 2 = k - 1

x = -3 

<=> 12k + 2 = k - 1

<=> 11k = - 3

<=> k = -3/11

Vs \(x=-3\)

\(-4kx+2=k-1\Rightarrow-4k.\left(-3\right)+2=k-1\)

\(12k+2=k-1\)

\(12k-k=-1-2\)

\(11k=-3\Leftrightarrow k=-\frac{3}{11}\)

15 tháng 3 2020

a) Với a=4 thì phương trình bằng \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2  với đkxđ: \(x\ne2,4\)

Giải phương trình: \(\frac{x+4}{x+2}+\frac{x-2}{x-4}\)= 2 => \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=> \(\frac{2}{x+2}+\frac{2}{x-4}=0\Rightarrow\frac{1}{x+2}+\frac{1}{x-4}=0\)

=> \(\frac{\left(x-4\right)+\left(x+2\right)}{\left(x+2\right)\cdot\left(x-4\right)}=0\)=> 2x-2=0 => x=1 (thỏa mãn đkxđ)

Vậy x=1

b) Với x=-1 => \(\frac{a-1}{1}+\frac{-3}{-1-a}=2\)(đkxđ: a không bằng -1)

=> \(\left(a-1\right)+\frac{3}{a+1}=2\)

=> \(\frac{a^2-1+3}{a+1}=2\)=> \(a^2+2=2\left(a+1\right)\Rightarrow a^2-2a=0\)

=> \(a\left(a-2\right)=0\)=> a = (0; 2) (thỏa mãn đkxđ)

Vậy để phương trình có nghiệm x=-1 thì a={0; 2}

a:Khi k=0 thì \(9x^2-25=0\)

=>x=5/3hoặc x=-5/3

b: Khi x=-1 thì pt sẽ là:

\(9-25-k^2+2k=0\)

\(\Leftrightarrow-k^2+2k-16=0\)

\(\Leftrightarrow k^2-2k+16=0\)

\(\Leftrightarrow\left(k-1\right)^2+15=0\)(vô lý)

18 tháng 12 2019

\(\text{a) Thay a = 4 vào pt ta có:}\)
      \(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)

\(\text{b) Thay x = -1 vào pt ta có:}\)
     \(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
 


 

18 tháng 12 2019

\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

                    \(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)

                    \(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)

                    \(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)

                    \(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)

                    \(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)

                    \(\Leftrightarrow4x-4=0\)

                    \(\Leftrightarrow x=1\)

                          

4 tháng 7 2017

a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :

\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)

Phương trình tích