Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)
b/
\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)
Mà \(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)
\(\Rightarrow lim\left(v_n\right)=0\)
\(u_n^2+2011=2u_n.u_{n+1}\Rightarrow u_{n+1}=\frac{u_n^2+2011}{2u_n}\)
Ta có \(u_1>0\), giả sử \(u_k>0\Rightarrow u_{k+1}=\frac{u_k^2+2011}{2u_k}>0\)
\(\Rightarrow\) Dãy đã cho là dãy dương
Mặt khác \(u_{n+1}=\frac{1}{2}\left(u_n+\frac{2011}{u_n}\right)\ge\frac{1}{2}.2\sqrt{2011}=\sqrt{2011}\)
\(\Rightarrow u_n\ge2011\) \(\forall n\ge1\Rightarrow\) dãy đã cho bị chặn dưới
Xét \(\frac{u_{n+1}}{u_n}=\frac{u_n^2+2011}{2u^2_n}=\frac{1}{2}+\frac{2011}{2u_n^2}\le\frac{1}{2}+\frac{2011}{2.2011}=1\) (do \(u_n\ge\sqrt{2011}\))
\(\Rightarrow u_{n+1}\le u_n\) \(\Rightarrow\) dãy đã cho là dãy giảm
Dãy giảm, bị chặn dưới \(\Rightarrow\) dãy có giới hạn
Gọi giới hạn của dãy là \(a\Rightarrow\sqrt{2011}\le a\le u_1\)
\(\Rightarrow a^2-2a^2+2011=0\)
\(\Rightarrow a^2=2011\Rightarrow a=\sqrt{2011}\)
\(\Rightarrow lim\left(u_n\right)=\sqrt{2011}\)
\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).
Lấy số dương ε bé tùy ý bất kì:
⇒ có một số n0 thỏa mãn: |vn| < ε kể từ n = n0.
⇒ |un – 2| < vn < |vn| < ε kể từ n = n0 trở đi
⇒ lim (un – 2) = 0
⇒ lim un = 2.