\(\)A=\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x}{x-3}\)

b: Ta có P=AB

nên \(P=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì 9x+9=6x

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

27 tháng 8 2021

a) \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\\ \Rightarrow A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

    \(\Rightarrow A=\dfrac{3x}{x-3}\)

Câu 3:

\(C=\dfrac{3\sqrt{x}-x+x+9}{9-x}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)

Để C<-1 thì C+1<0

=>-3 căn x+2 căn x+4<0

=>-căn x<-4

=>x>16

27 tháng 2 2018
a)

\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)

\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{9-x}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right]:\dfrac{1+\sqrt{x}}{\sqrt{x}-3}\)

\(A=\left(\dfrac{-3\sqrt{x}-3}{x-9}\right):\dfrac{1+\sqrt{x}}{\sqrt{x}-3}=\dfrac{-3\left(1+\sqrt{x}\right)}{x-9}.\dfrac{\sqrt{x}-3}{1+\sqrt{x}}=\dfrac{-3}{\sqrt{x}+3}\)

15 tháng 10 2017

\(A=\dfrac{2x}{x+3}-\dfrac{x+1}{3-x}-\dfrac{3-11x}{x^2-9}\)

\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{3-11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-3+11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

b) Ta đã rút gọn được \(A=\frac{3x}{x-3}\)

TH1: \(x-3>0\rightarrow x> 3\). Khi đó:

\( \frac{3x}{x-3}<2\)

\(\Leftrightarrow 3x< 2(x-3)\Leftrightarrow x< -6\) (vô lý)

TH2: \(x-3> 0\rightarrow x< 3\). Khi đó:

\(\frac{3x}{x-2}<2 \Leftrightarrow 3x> 2(x-3)\) (nhân với một số âm thì phải đổi dấu)

\(\Leftrightarrow x> -6\)

Vậy \(3> x> -6\) thì \(A< 2\)

Bài 2:

a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

 \(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)

b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)

=>P<1

25 tháng 4 2017

a)C=\(\dfrac{9}{\sqrt{x}+3}\)

b)\(x>36\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

22 tháng 11 2018

a) Để biểu thức P xác định thì \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Vậy ĐKXĐ:x\(\ge0\),x\(\ne9\)

\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\left(-3\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\)

\(\sqrt{x}\ge0\) và 0>-9

Vậy \(x\ge0\)

Kết hợp với ĐKXĐ, Vậy \(x\ge0\)\(x\ne9\) thì P<\(\dfrac{1}{2}\)

27 tháng 10 2022

a: \(Q=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3x+8\sqrt{x}-5-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+2}{\left(\sqrt{x}+3\right)}\)

b: Để Q=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

=>-10căn x+4=căn x+3

=>-11 căn x=-1

=>x=1/121