Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2+2^2+2^3+...+2^{60}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{60}\right)\)
\(2S=2^2+2^3+2^4+...+2^{61}\)
\(2S-S=\left(2^2+2^3+2^4+...+2^{61}\right)-\left(2+2^2+2^3+...+2^{60}\right)\)
\(S=2^{61}-2\)
\(S=2\left(2^{60}-1\right)\)
Mà: \(2\cdot\left(2^{60}-1\right)\) không phải là số chính phương
\(\Rightarrow S\) không phải là số chính phương
a) Ta có S = 1 + 3 + 32 + ... + 398
=> 3S = 3 + 32 + 33 + ... + 399
Khi đó 3S - S = ( 3 + 32 + 33 + ... + 399) - (1 + 3 + 32 + ... + 398)
=> 2S = 399 - 1
=> S = \(\frac{3^{99}-1}{2}\)
b) Ta có 399 - 1 = 396.33 - 1 = (34)24 . (...7) - 1 = (...1).(...7) - 1 = (...7) - 1 = ...6
=> (399 - 1) : 2 = ...6 : 2 = ....3
=> S không là số chính phương
a. \(S=1+3+3^2+3^3+...+3^{98}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}\)
\(\Rightarrow3S-S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b. \(S=1+3+3^2+...+3^{98}\)
\(\Rightarrow S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(\Rightarrow S=13+3^3.13+...+3^{96}.13\)
\(\Rightarrow S=13\left(1+3^3+3^6+...+3^{98}\right)⋮13\)
=> S không phải là SCP
a)Ta có: S=1.2.22.23…2100
=>S=20+1+2+3+…+100
=>S=25050
b)Ta có: S=25050=22525.2=(22525)2 là só chính phương
Vậy S là số chính phương
a) S chia het cho 5 hien nhien => S la hop so
b)4.S=(5^2017-5)
5^2017 hai so cuoi la 25
(5^2017-5 hai so cuoi tan cung 20 kho chinh phuomg=> s ko chinh phuong
c) kq cau (b)=> x=1
d)4.s+1=5^2017-5+1=5^n
5^n+4=5^2017 vo nghiem nguyen
\(S=1+3+3^2+3^3+....+3^{30}\)
\(3S=\left(1+3+3^2+3^3+...+3^{30}\right).3\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=\left(3+3^2+3^3+...+3^{31}\right)\)\(-\left(1+3+3^2+3^3+...+3^{30}\right)\)
\(2S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}\)
=>S không phải là số chính phương
Toán lớp 3
\(S=2^1+2^2+2^3+...+2^{60}\)
\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)
\(S=2^{61}-2\)
\(\Rightarrow S⋮2\)
Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)
Ta có:
\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)
Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)
Vậy S không phải là số chính phương.