Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Đáp án B
2/
a) Thời gian vật rơi:
\(t=\frac{v}{g}=3\left(s\right)\)
- Độ cao thả vật:
\(h=\frac{1}{2}gt^2=45\left(m\right)\)
b) Quãng đường vật rơi trong giây cuối cùng trước khi chạm đất :
\(\Delta s'=s_3-s_2=25\left(m\right)\)
1.B
2. a) h=\(\dfrac{v^2}{2g}\)=\(\dfrac{30^2}{2.10}\)=45(m)
t=\(\dfrac{v}{g}\)=\(\dfrac{30}{10}\)=3(s)
b) S2s=\(\dfrac{1}{2}\)gt2s2=\(\dfrac{1}{2}\).10.22=20(m)
\(\Delta S\)=S3s-S2s=h-S2s=25(m)
bài 1: Chọn chiều dương là chiều chuyển động, góc thời gian lúc xe 1 bắt đầu cđ.
pt cđ của xe 1: x1= v01.t + a1.t2/2 = 0,25.t2
pt cđ của xe 2: x1= v02.t = 10t
Khi xe 1 đuổi kịp xe 2: x1=x2 <=> 0,25.t2=10t <=> t = 40s
=> S1 = 0,25.402=400m ; v1 = 0,5.40 = 20 m/s
bài 2: Chọn chiều dương là chiều cđ, góc thời gian lúc xe ô tô khởi hành từ A.
ptvt xe 1: v1 = 0,5.t ; ptvt xe 2: v2 = 5 + 0,3t
ptcđ xe 1: x1 =-0,25.t2 ; ptcđ xe 2: x2 = -125 + 5t + 0,15.t2
a. gặp nhau <=> x1 = x2 <=>-0,25.t2 = -125 + 5t + 0,15.t2 <=> t = 18,3s
vị trí gặp nhau: |-0,25*t2| = 84m -> cách A 84m
v1 = ... ; v2 = ....
b. xe từ A -> B:-125 = -0,25.t2 <=> t = 10\(\sqrt{5}\)s => xe A đi được 125m
=>qđ xe từ B đi được: x2 = 61,8m
2) ta có : \(\left\{{}\begin{matrix}v_0+a\left(3-\frac{1}{2}\right)=8\\v_0+a\left(6-\frac{1}{2}\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}v_0+\frac{5}{2}a=8\\v_0+\frac{11}{2}a=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}-3a=6\\v_0+\frac{5}{2}a=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\left(m/s^2\right)\\v_0=13m/s\end{matrix}\right.\)
=> Chọn D.
Bài1:
\(S_1=v_0.2-\frac{1}{2}.a2^2=20\)
=> \(2v_0-2a=60\)(1)
\(v^2-v_0^2=2as\Rightarrow0^2-v_0^2=2a.20\Rightarrow v_0=\sqrt{40a}\)(2)
Từ (1) và (2) => \(2.\sqrt{40a}-2a=60\)
=> \(2\left(\sqrt{40a}-a\right)=60\)
<=> \(\sqrt{40a}-a=30\)
<=> \(\sqrt{40a}=30+a\Leftrightarrow40a=a^2+60a+900\)
=> \(a^2+20a+900=0\) (pt vô nghiệm)
A là gốc tọa độ, chiều dương từ A-B, gốc thời gian lúc hai vật bắt đầu chuyển động
x1=x0+vo.t+a.t2.0,5=10t-0,1t2
x2=x0+v0.t+a.t2.0,5=560-0,2t2
hai xe gặp nhau x1=x2\(\Rightarrow\)\(\left[{}\begin{matrix}t=40\left(n\right)\\t=-140\left(l\right)\end{matrix}\right.\)
vậy sau 40s hai xe gặp nhau
vị trí hai xe gặp nhau x1=x2=240m
a)
Chọn chiều (+) hướng lên. Gốc thời gian lúc bắt đầu ném
\(y=v_0t+\frac{gt2}{2}=20t-5t^2\) (1)
\(v=v_0+gt=20-10t\) (2)
Tại điểm cao nhất v=0
Từ (2) \(\Rightarrow\) t=2(s) thay vào (1)
yM = 20(m)
b)
Khi chạm đất y=0 từ (1)\(\Rightarrow\) t=0 và t=4 (s)
Thay t = 4 (s) vào (2) \(v'=-20m\text{/}s\)
(Dấu trừ (-) vận tốc ngược với chiều dương.)
Đáp án B
Vẽ đồ thị vận tốc – thời gian như hình thì quãng đường vật đi được bằng diện tích tam giác
Chú ý: Bài toán có thể giải bằng cách khác