K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Chọn D

21 tháng 10 2021

Tiền lãi sau một tháng là:
5 000 0000 x 0,5 : 100 = 25 000 (đồng)
Cả tiền gửi và tiền lãi suất sau một tháng là:
5 000 000 + 25 000 = 5 025 000 (đồng).
Đáp án: 5 025 000 (đồng).

sửa số đo

Một tháng lãi được số tiền là

            42 965 600 x 0,5% = 214828 (đồng)

Tổng cả gốc lẫn lãi là

             42 965 600 + 214 828 = 43 180 428 (đồng)

HT

2 tháng 1 2018

Chọn D.

Gọi số tiền ít nhất mà thầy giáo cần dành ra mỗi tháng để gửi tiết kiệm là x (đồng).

Số tiền tiết kiệm gửi vào ngân hàng sau 60 tháng là 

Theo bài ta có:

(đồng)

19 tháng 8 2018

Chọn A.

Ta có: T = A(1+ r)n

- 12 tháng đầu: lãi suất 1%/ tháng suy ra r1= 3%/quý và n = 4

Do đó sau 12 tháng đầu tiên số tiền cả gốc lẫn lãi là:T1 = 2( 1 + 3%) 4

- 18 tháng tiếp theo: lãi suất 1,1%/tháng suy ra r2= 3,3%/ quý và

Do đó sau 18 tháng tiếp theo số tiền cả gốc lẫn lãi là:T2 = T1( 1 + 3,3%)6

- 6 tháng cuối cùng: lãi suất 1,2%/ tháng suy rar3= 3,6%/ quý và n = 2

Số tiền cả gốc lẫn lãi thu được là T3= T2( 1+ 3,6%) 2 = 2,9356.

27 tháng 4 2016

Gọi \(M\left(x_0;y_0\right)\)là tiếp điểm. Ta có : \(y'=-3x^2+3\)

a) Vì tiếp tuyến vuông góc với đường thẳng \(x+y-1=0\Rightarrow y=-x+1\) nên ta có :

\(y'\left(x_0\right)=1\Leftrightarrow-3x^2_0+3=1\Leftrightarrow x_0=\pm\frac{\sqrt{6}}{3}\)

\(x_0=\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18+7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x-\frac{\sqrt{6}}{3}\right)+\frac{18+7\sqrt{6}}{9}=x+\frac{18+7\sqrt{6}}{9}\)

\(x_0=-\frac{\sqrt{6}}{3}\Rightarrow y_0=\frac{18-7\sqrt{6}}{9}\) nên ta có phương trình tiếp tuyến 

                                       \(y=\left(x+\frac{\sqrt{6}}{3}\right)+\frac{18-7\sqrt{6}}{9}=x+\frac{18-7\sqrt{6}}{9}\)

 
b) Ta có \(y'=-3x^2_0+3\le3\) với mọi \(x_0\Rightarrow maxy'=3\) đạt được khi \(x_0=0\)
Tiếp tuyến có hệ số góc nhỏ nhất có tiếp điểm là \(M\left(0;2\right)\) và \(y'\left(x_0\right)=3\) nên ta có phương trình : \(y=3x+2\)
 
c) Gọi hệ số góc của tiếp tuyến là k thì \(\overrightarrow{n}\left(k;-1\right)\) là vectơ pháp tuyến của \(\Delta\)

Vì \(\Delta\) tạo với \(\Delta'\) một góc bằng \(45^0\) nên \(\frac{\left|k-1\right|}{\sqrt{k^2+1}.\sqrt{2}}=\frac{\sqrt{2}}{2}\Leftrightarrow k=0\)

Ta có \(f'\left(x_0\right)=k\Leftrightarrow-3x^2_0+3=0\Leftrightarrow x_0=\pm1\)

\(x_0=1\Rightarrow y_0=4\Rightarrow\Delta:y-4=0\)

\(x_0=-1\Rightarrow y_0=-2\Rightarrow\Delta:y+2=0\)

 
 
 

 

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

8 tháng 1 2022

cho năm năm

8 tháng 1 2022

Gọi H chân đường kẻ từ A của lăng trụ

Khi đó A'H là là hình chiếu của AA' trên mp

Xét tam giác AA'H vuông tại H có : \(SinA'=\frac{AH}{AA'}\)

\(AH=AA'.SinA'=AA'.Sin60^o=\frac{b\sqrt{3}}{2}\)

Do tam giác A'B'C' là tam giác đều nên chiều cao của tam giác : \(\frac{a\sqrt{3}}{2}\)

Thể tích ABC.A'B'C' : V = \(\frac{1}{3}\). AH . \(S_{A'B'C'}=\frac{3}{8}\)\(a^2b\)

Đáp án đó

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được: a) \(I=2ln\left(x\right)\) b) \(I=ln\left(xe\right)^{ln\left(x\right)}\) c) \(I=ln\left(x^{lnx}e\right)\) d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\) Câu 2: Hàm số nào sau đây không có cự trị: a) \(y=\frac{2+x^2}{x^2-4}\) b) \(y=x^8+x^6+2x^4-4x^2-x+1\) c) \(y=sin\left(cos\left(x\right)\right)\) d) \(y=x^3+2x^2+\sqrt{x}\) Câu 3: Cho đồ thị \(\left(C\right):\)...
Đọc tiếp

Câu 1: Rút gọn biểu thức \(I=ln\left(x\right)^2+ln\left(x\right)\) ta được:

a) \(I=2ln\left(x\right)\)

b) \(I=ln\left(xe\right)^{ln\left(x\right)}\)

c) \(I=ln\left(x^{lnx}e\right)\)

d) \(I=ln\left(x^{ln\left(x\right)}.x\right)\)

Câu 2: Hàm số nào sau đây không có cự trị:

a) \(y=\frac{2+x^2}{x^2-4}\)

b) \(y=x^8+x^6+2x^4-4x^2-x+1\)

c) \(y=sin\left(cos\left(x\right)\right)\)

d) \(y=x^3+2x^2+\sqrt{x}\)

Câu 3: Cho đồ thị \(\left(C\right):\) \(y=\frac{m-x}{x+1}\) và đường thẳng \(\left(d\right):\) \(y=2x+m\) . Hỏi m thuộc khoảng nào để thoả mản đường thẳng \(\left(d\right)\) cắt đồ thị \(\left(C\right)\) tại hai điểm A,B sao cho \(OA=OB\) với \(O\) là gốc toạ độ.
a) \(\left(—\infty;-2\right)\)

b)\(\left[-2;4\right]\)

c) \(\left(4;+\infty\right)\)

d) Không tồn tại giá trị m

Câu 4: Giả sử 2 cặp nghiệm của hệ phương trình \(\left\{{}\begin{matrix}2ln^2\left(x\right)+3ln^2\left(y\right)=5\\ln\left(x\right)+2ln\left(y^2\right)=3\end{matrix}\right.\) đều có dạng \(\left(e\sqrt[a]{e^{18}};\sqrt[b]{e^{13}}\right)=\left(x_1;y_1\right)\)\(\left(e^c;e^d\right)=\left(x_2;y_2\right)\). Mệnh đề nào sau đây là sai:

a) \(a-b+c+d=0\)

b) \(c=\frac{1}{d}\)

c) \(\left(a-b\right)\left(c+d\right)=0\)

d) \(a+b=35c^2+35d\)

Câu 5: Cho \(m\) là các số nguyên thuộc \(\left[0;10\right]\). Các tấc cả bao nhiêu giá trị \(m\) để phương trình \(2^{mx}-mx^2=0\) có 3 nghiệm phân biệt.
a) 0

b) 1

c) 2

d) Đáp án khác

2
NV
5 tháng 2 2020

Câu 1: Là \(ln^2x+lnx\) hay \(lnx^2+lnx\) bạn, hai cái này khác nhau lắm, viết thế kia chẳng hiểu gì cả. Biểu thức logarit nếu viết mũ, thì hoặc là viết thế này \(ln^2x\) hoặc là \(\left(lnx\right)^2\), nếu viết \(ln\left(x\right)^2\) người ta sẽ mặc định hiểu là \(ln\left(x^2\right)\)

Chắc là cái đầu, vậy ta biến đổi được:

\(lnx\left(lnx+1\right)=lnx\left(lnx+lne\right)=lnx.ln\left(x.e\right)=ln\left(x.e\right)^{lnx}\)

Câu 2: đạo hàm 4 cái ra, dễ dàng nhận ra ở đáp án d, với \(x\ge0\Rightarrow f'\left(x\right)=3x^2+4x+\frac{1}{2\sqrt{x}}>0\) luôn đồng biến nên hàm không có cực trị

Câu 3:

Phương trình hoành độ giao điểm:

\(\frac{m-x}{x+1}=2x+m\Leftrightarrow m-x=2x^2+\left(m+2\right)x+m\)

\(\Leftrightarrow2x^2+\left(m+3\right)x=0\)

Phương trình luôn có nghiệm \(x=0\) hay ít nhất 1 trong 2 điểm A; B sẽ trùng gốc tọa độ tức \(OA=0\) hoặc \(OB=0\)

Do đó ko tồn tại m thỏa mãn

NV
5 tháng 2 2020

Câu 4:

\(\left\{{}\begin{matrix}lnx=X\\lny=Y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2X^2+3Y^2=5\\X+4Y=3\end{matrix}\right.\)

\(\Rightarrow2\left(3-4Y\right)^2+3Y^2=5\)

\(\Leftrightarrow35Y^2-48Y+13=0\Rightarrow\left[{}\begin{matrix}Y=1\Rightarrow X=-1\\Y=\frac{13}{35}\Rightarrow X=\frac{53}{35}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}lnx=-1\\lny=1\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(e^{-1};e\right)\) \(\Rightarrow\left\{{}\begin{matrix}c=-1\\d=1\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}lnx=\frac{53}{35}\\lny=\frac{13}{35}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=e^{\frac{53}{35}}=e\sqrt[35]{e^{18}}\\y=e^{\frac{13}{35}}=\sqrt[35]{e^{13}}\end{matrix}\right.\) \(\Rightarrow a=b=35\)

Đáp án b sai

22 tháng 5 2016

mình cũg đâu bao giờ đc đâu đành chịu thôi 

22 tháng 5 2016

mik cx z suốt ngày bị bố mẹ so sánh vs con nhà người ta