Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
O y x A C B 70o D z
*) Ta có: AC // Ox
Oy cắt AC tại C, cắt Ox tại O
Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau
Mà \(\widehat{xOy}\)= \(70^o\)=> \(\widehat{ACy}\)= \(70^o\)
*) Ta có: BA // Oy
AC cắt BA tại A, cắt Oy tại C
Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)
=> \(\widehat{DAz}\)= \(70^o\)
Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh
=> \(\widehat{BAC}\)= \(70^o\)
Ta có: \(\widehat{BAC}\)+ \(\widehat{CAz}=180^o\)(2 góc kề bù)
=> \(\widehat{CAz}=110^o\)
Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)= \(110^o\)
Vậy...
tam giá ABC cân tại A
=> (180 độ - góc A):2 = góc B = góc C
=> (180 độ - 70 độ):2 = 110 độ :2 = 55 độ
Vậy góc C = 55 độ
A B C x y
Có góc BAC = 180 - ( góc B + góc C ) = 180 - 80 = 100 độ
=> góc yAC = 180 - 100 = 80 độ
mà Ax là tia p/g ngoài góc A => yAx = xAC = yAC : 2 = 80 : 2 =40 độ
=>góc xAC = góc ACB = 40 độ
mà ở vị trí so le trong => Ax // BC
Ta có: góc CAy là góc ngoài của tam giác ABC
=>Góc CAy = góc B + góc C=40+40=80
mà Ax là tia phan giác của ngoài góc A
=>yAx=xAc=CAy:2=80:2=40 độ
Mà góc ACB=40 độ
=>xAc=ACB(=40 độ)
mà hai góc này nằm ở vị trí so le trong
=>Ax//BC
Bài 1 : giả sử :
Góc 1 = 47
góc 2 = 47 ( đối đỉnh vs góc 1 )
góc 3 = 133 ( kề bù vs góc 1)
góc 4 = 133 ( đối đỉnh vs góc 3)
Ta có: B=A.2
=> B=45.2=90
Mà góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.
Nên: góc ngoải của C 90+35=135
Vậy góc ngoải của C =135 độ
Mình cũng đag thi
Hình tự vẽ
Vì tam giác ABC cân tại A => góc B = góc C
=> \(\widehat{B}=\widehat{C}=\left(180^{\text{o}}-2.70^{\text{o}}\right):2=20^{\text{o}}\)
=> \(\widehat{CBI}=\widehat{BCI}\) = 20 : 2 = 10o
=> Xét tam giác BIC có : \(\widehat{BIC}=\)180o - 10o - 10o = 160o
Hình tự vẽ nhé !
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\left(1\right)\)
Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(2\right)\) ( tính chất tổng 3 góc 1 tam giác )
Từ \(\left(1\right)\left(2\right)\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-70^0}{2}=55^0\)
Vì tia phân giác góc B và C cắt nhau tại I \(\Rightarrow\widehat{BCI}=\widehat{CBI}=55^0\div2=27,5^0\)
Xét tam giác BIC có \(\widehat{BCI}+\widehat{BIC}+\widehat{CBI}=180^0\) ( t/c tổng 3 góc 1 tam giác )
\(\Rightarrow\widehat{BIC}=180^0-\left(\widehat{BCI}+\widehat{CBI}\right)=180^0-\left(27,5^0+27,5^0\right)=125^0\)
O A C B D
Cm: a) Xét t/giác OAD và t/giác OCB
có: OA = OC (gt)
\(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)
OD = OB (gt)
=> t/giác OAD = t/giác OCD (c.g.c)
=> AD = BC (2 cạnh t/ứng)
Tương tự, xét t/giác AOB và t/giác COD
có: OA = OC (gt)
\(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)
OB = OD (gt)
=> t/giác AOB = t/giác COD (c.g.c)
=> AB = DC (2 cạnh t/ứng)
b) Xét t/giác ADC và t/giác CAB
có: AC : chung
AD = BC (cmt)
AB = DC (cmt)
=> t/giác ADC = t/giác CAB (c.c.c)
=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)
Xét t/giác ADB và t/giác CBD
có: AB = CD (cmt)
AD = CB (cmt)
BD : chung
=> t/giác ADB = t/giác CBD (c.c.c)
=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)