K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

undefined

27 tháng 6 2016

...,,,,,,,,,,@ giải một bài toán 

30 tháng 3 2017

a) Gọi chiều dài là a, chiều rộng là b.

Nửa chu vi hình chữ nhật là : \(\dfrac{94,4}{2}=47,2\left(m\right)\)

Ta có hệ pt : \(\left\{{}\begin{matrix}a+b=47,2\\a\cdot b=494,55\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=47,2-b\\\left(47,2-b\right)\cdot b=494,55\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=47,2-b\\47,2b-b^2=494,55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=47,2-15,7=31,5\\b=15,7\left(giải-HPT-bậc-2\right)\end{matrix}\right.\)

Vậy chiều dài là 31,5 mét, chiều rộng 15,7 mét.

b) Vẫn gọi chiều dài là a, chiều rộng là b.

Có hpt : \(\left\{{}\begin{matrix}a-b=12,1\\a\cdot b=1089\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\\left(12,1+b\right)\cdot b=1089\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=12,1+b\\12,1b+b^2=1089\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=12,1+27,5=39,6\\b=27,5\left(Giải-HPT-Bậc-2\right)\end{matrix}\right.\)

Vậy chiều dài là 39,6 mét, chiều rộng là 27,5 mét.

9 tháng 9 2016

Diện tích mỗi phần:

\(\left(\frac{15}{4}\cdot\frac{2}{3}\right):5=\frac{1}{2}\left(m^2\right)\)

Đáp số : \(\frac{1}{2}m^2\)

22 tháng 3 2018

Gọi chiều dài, chiều rộng của mảnh vườn hình chữ nhật lần lượt là x (m), y (m). (điều kiện x > y > 0)

a) Theo đề bài:

Chu vi là 94,4m nên ta có phương trình: 2(x + y) = 94,4 (1)

Diện tích là 494,55m2 nên ta có phương trình: x.y = 494,55 (2)

Từ (1) và (2) ta có hệ:

Giải bài 12 trang 71 sgk Đại số 10 | Để học tốt Toán 10

Giải hệ phương trình trên:

Cách 1: Dựa vào định lý Vi–et đảo

Từ hệ phương trình suy ra x, y là nghiệm của phương trình:

X2 – 47,2X + 494,55 = 0

Giải phương trình ta được: X1 = 31,5 và X2 = 15,7

Vì x > y nên x = 31.5 và y = 15.7

Cách 2: Phương pháp thế

Từ x + y = 47,2 ⇒ x = 47,2 – y, thay vào phương trình x.y = 494,55 ta được:

(47,2 – y).y = 494,55

⇔ 47,2.y – y2 = 494,55

⇔ y2 – 47,2y + 494,55 = 0

⇔ y = 31.5 hoặc y = 15.7

Nếu y = 31.5 ⇒ x = 15.7 (loại vì x < y)

Nếu y = 15.7 ⇒ x = 31.5 (thỏa mãn).

Vậy hình chữ nhật có chiều dài bằng 31.5m và chiều rộng bằng 15.7m

b) Theo đề bài:

Hiệu của hai cạnh là 12,1 m nên ta có phương trình: x – y = 12,1 (3)

Diện tích là 1089m2 nên ta có phương trình: x.y = 1089 (4)

Từ (3) và (4) ta có hệ: Giải bài 12 trang 71 sgk Đại số 10 | Để học tốt Toán 10

Từ (3) ⇒ x = 12,1 + y, thay vào (4) ta được:

(12,1 + y).y = 1089

⇔ y2 + 12,1.y – 1089 = 0

⇔ y = 27,5 (t/m) hoặc y = –39,6 (loại)

⇒ x = 12,1 + 27,5 = 39,6

Vậy hình chữ nhật có chiều dài 39,6m và chiều rộng 27,5m

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

3 tháng 2 2020

Chỉ lm bài thoii, hình bn tự vẽ nha !!!

\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)

Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp

Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)

\(b.\) Tứ giác \(ADEH\) có:

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp

Từ đó \(\widehat{BAK}=\widehat{BDE}\)

Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )

Do đó \(\widehat{BJK}=\widehat{BDE}\)

3 tháng 2 2020

Câu c mk làm sau cho nha !

10 tháng 2 2020

a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)

\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)

b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)

\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)

c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)

\(\Leftrightarrow m^2-6m-23\ge0\)

\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)

\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)

\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)

mấy câu kia cũng dùng Vi-ét xử tiếp nha