Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{1}{\left(2x+y\right)^2}\right)\cdot\dfrac{\left(2x+y\right)^2}{16x}\)
\(=\dfrac{4x^2+4xy+y^2+2\left(4x^2-y^2\right)+4x^2-4xy+y^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}\cdot\dfrac{\left(2x+y\right)^2}{16x}\)
\(=\dfrac{8x^2+2y^2+8x^2-2y^2}{\left(2x-y\right)^2}\cdot\dfrac{1}{16x}\)
\(=\dfrac{16x^2}{16x}\cdot\dfrac{1}{\left(2x-y\right)^2}=\dfrac{x}{\left(2x-y\right)^2}\)
b: \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)
\(=\dfrac{2x+4-4}{\left(x+2\right)^2}:\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right)\)
\(=\dfrac{2x}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{-x}=\dfrac{-2\left(x-2\right)}{x+2}\)
câu này post hồi học lớp 8 = )) giờ tốt nghiệp c3 thì có người trả lời :'))
khbiet nên cười hay khóc đây
\(1,\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4=\left(x+2y-3-2\right)^2=\left(x+2y-5\right)^2\)
\(2,\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\text{[}\left(x-y\right)^2+x-y+1\text{]}-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\left(x^2+y^2+x-y+1-3x+3y\right)=\left(x-y-1\right)\left(x^2+y^2-2x+2y+1\right)\)
\(3,\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2=\left(x^2+y^2-17\right)-\left(2xy-8\right)^2=\left(x^2-2xy+y^2-9\right)\left(x^2+y^2+2xy-25\right)=\text{[}\left(x-y\right)^2-3^2\text{]}\text{[}\left(x+y\right)^2-5^2\text{]}=\left(x-y+3\right)\left(x-y-3\right)\left(x+y+5\right)\left(x+y-5\right)\)
Ta có: \(16x^4+1\ge8x^2\) ; \(y^4+1\ge2y^2\)
\(\Rightarrow\left(16x^4+1\right)\left(y^4+1\right)\ge8x^2.2y^2=16x^2y^2\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}16x^4=1\\y^4=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\frac{1}{2}\\y=\pm1\end{matrix}\right.\)
23: \(=\left(2a-b\right)^2-\left(2a-2b\right)^2\)
\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)
\(=b\left(4a-3b\right)\)
24: \(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)
\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)
\(=\left(a+7b\right)\left(5a-b\right)\)
25: \(=\left(4a-2b\right)^2-\left(4a-4b\right)^2\)
\(=\left(4a-2b-4a+4b\right)\left(4a-2b+4a-4b\right)\)
\(=2b\left(8a-6b\right)\)
=4b(4a-3b)
1.
\(3x^2-16x+5\\ =3x^2-x-15x+5\\ =x\left(3x-1\right)-5\left(3x-1\right)\\ =\left(x-5\right)\left(3x-1\right)\)
2.
\(3x^3-14x^2+4x+3\\ =\left(3x^3+x^2\right)-\left(15x^2+5x\right)+\left(9x+3\right)\\ =x^2\left(3x+1\right)-5x\left(3x+1\right)+3\left(3x+1\right)\\ =\left(x^2-5x+3\right)\left(3x+1\right)\)
3. \(x^8+x^7+1\\ =\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\\ =x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x^3-1\right)+x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\\ =x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x\left(x^3+1\right)\left(x+1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)[x^2\left(x^3+1\right)\left(x-1\right)+x\left(x^3+1\right)\left(x-1\right)+1]\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+x^5-x^4+x^2-x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)4.
\(64x^4+y^4\\ =\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\\ =\left(8x^2+y^2\right)^2-16x^2y^2\\ =\left(8x^2+y^2-4xy\right)\left(8x^2+y+4xy\right)\)
5.
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\\ =\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\\ =\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+4a^2+2a^2\right)+a^4\\=\left(x^2+5ax+4a^2\right)+2a^2\left(x^2+5ax+4a^2\right)+a^4\\ =\left(x^2+5ax+5a^2\right)^2\)