Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3.\left(10.x\right)=111\)
\(10.x=37\)
\(x=\dfrac{37}{10}\)
b) \(3.\left(10+x\right)=111\)
\(10+x=37\)
\(x=27\)
c) \(3+\left(10.x\right)=111\)
\(10.x=108\)
\(x=\dfrac{54}{5}\)
d) \(3+\left(10+x\right)=111\)
\(x=111-3-10\)
\(x=98\)
\(B=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\)
Ta có :
\(\left(3x+2\right)^4\ge0\Rightarrow-5\left(3x+2\right)^4\le0\left(1\right)\)
\(\left(x+2y\right)^2\ge0\Rightarrow-\left(x+2y\right)^2\le0\left(2\right)\)
Từ (1)(2) \(\Rightarrow-5\left(3x+2\right)^4-\left(x+2y\right)^2\le0\)
\(\Rightarrow-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\le111\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}5\left(3x+2\right)^4=0\\\left(x+2y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=0\\x+2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\-\dfrac{2}{3}+2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy B đạt GTLN bằng 11 khi \(x=-\dfrac{2}{3};y=\dfrac{1}{3}\)
\(A=-5\left(3x+2\right)^4-\left(x+2y\right)^2+111\le111\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}-5\left(3x+2\right)^4=0\\-\left(x+2y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)
GTNN của F= -111+|x-3| +|x+7| là -101 nha!
Còn GTNN của G \(=\frac{18}{25}+\left(x+y+3\right)^{2014}+\left(y-z+1\right)^{2016}\left|x-2\right|\)là \(\frac{18}{25}\)
Gmin=18/25
dấu "=" xảy ra<=>
x+y+3=0=>x+y=-3
y-z+1=0=>y-z=-1=>y=-1+z
x-2=0=>x=2
vậy x+y=-3
<=>2+(-1)+z=3
<=>1+z=3=>z=2
Đặt x + 29 = a (a \(\ne-29;-30\))
Đề trở thành: \(\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow\frac{a^2+2a+1+a^2}{a^2\left(a^2+2a+1\right)}=\frac{5}{4}\)
\(\Leftrightarrow\frac{2a^2+2a+1}{a^4+2a^3+a^2}=\frac{5}{4}\)
\(\Leftrightarrow8a^2+8a+4=5a^4+10a^3+5a^2\)
\(\Leftrightarrow5a^4+10a^3-3a^2-8a-4=0\)
\(\Leftrightarrow5a^4+10a^3-3a^2-6a-2a-4=0\)
\(\Leftrightarrow5a^3\left(a+2\right)-3a\left(a+2\right)-2\left(a+2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(5a^3-3a-2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(5a^3-5a+2a-2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(a-1\right)\left(5a^2+5a+2\right)=0\)
tới đây dễ r`
A=1.2.3+2.3.4+3.4.5+...+98.99.100
a, Vào câu hỏi tương tự nhé
b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)
=> x+3+x+1=3x
=> 2x+4=3x
=>x=4
c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)
=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)
=> \(2005\ge\left|x+101\right|+2004\)
=> \(\left|x+101\right|\le1\)
=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)
d, tương tự b
Với \(\forall x\) ta có :
+) \(\left|x+\dfrac{1}{2}\right|\ge0\)
+) \(\left|x+\dfrac{1}{6}\right|\ge0\)
..........................
+) \(\left|x+\dfrac{1}{110}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+.........+\left|x+\dfrac{1}{110}\right|\ge0\)
Mà \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+........+\left|x+\dfrac{1}{110}\right|=11x\)
\(\Leftrightarrow11x\ge0\)
\(\Leftrightarrow x\ge0\)
Với \(x\ge0\) thì :
+) \(\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\)
+) \(\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\)
.....................................
+) \(\left|x+\dfrac{1}{110}\right|=x+\dfrac{1}{110}\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+......+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow11x+\left(\dfrac{1}{2}+\dfrac{1}{6}+........+\dfrac{1}{110}\right)=11x\)
\(\Leftrightarrow0x=\dfrac{1}{2}+\dfrac{1}{6}+....+\dfrac{1}{110}\) (vô lí)
\(\Leftrightarrow x\in\varnothing\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
Với mọi x ta có:
+) \(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\.........\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\) \(\forall x.\)
Mà \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
\(\Rightarrow11x\ge0\)
\(\Rightarrow x\ge0.\)
Với \(x\ge0\) thì:
\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\\..........\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{matrix}\right.\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)
\(\Rightarrow11x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x-11x\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}=0x\) (vô lí).
\(\Rightarrow x\in\varnothing.\)
Vậy không tồn tại giá trị của x thỏa mãn yêu cầu đề bài.
Chúc bạn học tốt!
mình sửa đề chút nhé + \(\left|x+\frac{1}{110}\right|=11x\)
(x-30)+(x-29)+...+110=0
(100. (x-30)).n :2=0
100. (x-30).n=0
100.(x-30)=0
x-30=0
x=30
K nha