Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(a)x-\sqrt{2}+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left[1+3\left(x+\sqrt{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\1+3x+3\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\2x=-3\sqrt{2}-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\frac{3\sqrt{2}-1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\left(\frac{-3\sqrt{2}+1}{2}\right)\end{cases}}\)
_Không biết có sai ở đâu không mà kết quả hơi kỳ , bạn nhớ xem lại nhá!_
\(b)x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left[\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\right]=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)
\(\Leftrightarrow-x.\left(x+\sqrt{5}\right)=0\)
_Minh ngụy_
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+\sqrt{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\sqrt{5}\end{cases}}}\)
Điều kiện tự làm nha.
\(\sqrt{x\left(x+1\right)}+\sqrt{x\left(x+2\right)}=\sqrt{x\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\left(1\right)\\\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+3}=0\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}=\sqrt{x+3}\)
\(\Leftrightarrow2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}=x+3\)
\(\Leftrightarrow2\sqrt{\left(x+1\right)\left(x+2\right)}=-x\)
Tới đây thì bình phương 2 vế rồi giải phương trình bậc 2 nhé
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
ĐK: \(-\sqrt{3}\le x\le\sqrt{3}\).
\(\left(x-2\right)\sqrt{3-x^2}=x^2-x-2\)
\(\Leftrightarrow\left(x-2\right)\sqrt{3-x^2}=\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\sqrt{3-x^2}-x-1\right)=0\)
\(\Leftrightarrow\sqrt{3-x^2}=x+1\)(vì \(-\sqrt{3}\le x\le\sqrt{3}\))
\(\Rightarrow3-x^2=\left(x+1\right)^2\)
\(\Leftrightarrow2x^2+2x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\left(tm\right)\\x=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\)