Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a)
Đặt \(t=x^2+x+1\) Phương trình trở thành :
\(\sqrt{t+3}+\sqrt{t}=\sqrt{2t+7}\) Bình phương hai vế ta được:
\(2t+3+2\sqrt{\left(t+3\right)t}=2t+7\)\(\Leftrightarrow\sqrt{t\left(t+3\right)}=2\)
\(\Leftrightarrow t^{^2}+3t-4=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-4\left(l\right)\end{matrix}\right.\)
Khi \(t=1\)thì \(x^{^2}+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu b)
\(\left\{\begin{matrix} x^2-xy-2=0\\ x^2+y^2+2x+2y-2=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2=x^2-xy\\ x^2+y^2+2x+2y-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+2x+2y-(x^2-xy)=0\)
\(\Leftrightarrow y^2+2x+2y+xy=0\)
\(\Leftrightarrow y(y+2)+x(y+2)=0\Leftrightarrow (y+2)(x+y)=0\)
Xét 2 TH:
TH1: \(y+2=0\Leftrightarrow y=-2\)
Thay vào pt đầu tiên suy ra \(x^2+2x-2=0\Leftrightarrow x=-1\pm \sqrt{3}\)
TH2: \(x+y=0\Leftrightarrow x=-y\)
Thay vào pt đầu tiên suy ra \(x^2+x^2-2=0\Leftrightarrow x=\pm 1\Rightarrow y=\mp 1\)
Vậy \((x,y)=(-1\pm \sqrt{3};-2);(1;-1);(-1;1)\)
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)
Lấy (1). 2 - (2) ta được:
\(2x^3+y^3-x^2y-2xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)
Đến đây dễ rồi nhé ^^
2/ Ta viết lại pt thứ 2 của hệ:
\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)
\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)
\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)
Bạn làm tiếp nhé!
3/ Ta viết lại pt thứ nhất của hệ
\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)
\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)
Bạn làm tiếp được chứ?
4/ Viết lại pt thứ 2 của hệ
\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)
\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)
Điều kiện \(x>0\)
Chia cả 2 vế của phương trình (1) cho \(x\) ta được :
\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)
\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)
\(\Leftrightarrow y^2=4x+2\)
Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)
Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)
Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)
Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...