Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)\cdot\cdot\cdot\left(1-\frac{2}{2011}\right)\)
\(A=\left(\frac{5-2}{5}\right)\left(\frac{7-2}{7}\right)\left(\frac{9-2}{9}\right)\cdot\cdot\cdot\left(\frac{2011-2}{2011}\right)\)
\(A=\frac{3}{5}\cdot\frac{5}{7}\cdot\frac{7}{9}\cdot\cdot\cdot\frac{2009}{2011}\)(các thừa số trên tử giống dưới mẫu mình lượt bỏ đi nhé!)
\(A=\frac{3}{2011}\)
\(A=\left(1-\frac{2}{5}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{2011}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{2009}{2011}\)
\(=\frac{3}{2011}\)
Đặt \(A=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)+...+\left(1+\frac{7}{2009}\right)\)
\(\Leftrightarrow1+\left(\frac{7}{9}.\frac{7}{20}.\frac{7}{33}.\frac{7}{48}.....\frac{7}{2009}\right)\)
Dãy phân số trên có số phân số là:
(2009 - 9) : 4 + 2 =502
\(\Rightarrow A=1+\left(\frac{7^{502}}{9.20.33.48.....2009}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...0...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=0\)
\(A=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.......\frac{2907}{2900}\)
\(A=\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}......\frac{51.57}{50.58}\)
\(A=\frac{2.3.4.....51}{1.2.3...50}.\frac{8.9.10....57}{9.10.11...58}\)
\(A=51.\frac{8}{58}=\frac{204}{29}\)
Bạn Nguyễn Tuấn Minh làm đúng rùi đó !!! Chuẩn ý kiến mk...^.^
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...0...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=0\)
\(E=\frac{7-1}{7}+\frac{7-2}{7}+\frac{7-3}{7}+...+\frac{7-9}{7}+\frac{7-10}{7}\)
Vì trong biểu thức E có số hạng \(\frac{7-7}{7}=0\)
Nên E=0 (ĐPCM)
hok tốt
`Answer:`
Ta thấy:
\(9=1.9\)
\(20=10.2\)
\(33=11.3\)
...
\(9200=100.92\)
`=>` Mẫu thức của từng nhân tử có dạng là \(n\left(n+8\right)\)
Xét dạng tổng quát của nhân tử: \(1+\frac{7}{n\left(n+8\right)}=\frac{n^2+8n+7}{n\left(n+8\right)}=\frac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(n=1\Rightarrow1+\frac{7}{1.9}=\frac{2.8}{1.9}\)
\(n=2\Rightarrow1+\frac{7}{2.10}=\frac{3.9}{2.10}\)
\(n=3\Rightarrow1=\frac{7}{3.10}=\frac{4.10}{3.11}\)
...
\(n=92\Rightarrow1+\frac{7}{92.100}=\frac{93.99}{92.100}\)
\(\Rightarrow\frac{2.8}{1.9}.\frac{3.9}{2.10}.\frac{4.10}{3.11}...\frac{93.99}{92.100}=\frac{\left(2.3.4...93\right)\left(8.9.10...9\right)}{\left(1.2.3...92\right)\left(9.10.11...100\right)}=\frac{93.8}{1.100}=\frac{186}{25}\)