Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{1}}{10\sqrt{6}}=\dfrac{\sqrt{1}.\sqrt{6}}{10\sqrt{6}.\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)
b) \(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{11}}{6\sqrt{15}}=\dfrac{\sqrt{11}.\sqrt{15}}{6\sqrt{15}.\sqrt{15}}=\dfrac{\sqrt{165}}{90}\)
c) \(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{3}}{5\sqrt{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{10}\)
d) \(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{5}}{7\sqrt{2}}=\dfrac{\sqrt{5}.\sqrt{2}}{7\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}}{14}\)
e) \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{\left(1-\sqrt{3}\right)^2}}{3\sqrt{3}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{3\sqrt{3}.\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\sqrt{\dfrac{1\cdot6}{600\cdot6}}=\sqrt{\dfrac{6}{60^2}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\sqrt{\dfrac{11\cdot15}{540\cdot15}}=\sqrt{\dfrac{165}{90^2}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{3\cdot2}{50\cdot2}}=\sqrt{\dfrac{6}{10^2}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{5\cdot2}{98\cdot2}}=\sqrt{\dfrac{10}{12^2}}=\dfrac{\sqrt{10}}{12}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\sqrt{\dfrac{3\left(1-\sqrt{3}\right)^2}{27\cdot3}}\)
\(=\dfrac{\sqrt{3\left(1-\sqrt{3}\right)^2}}{\sqrt{9^2}}=\dfrac{\left|1-\sqrt{3}\right|\cdot\sqrt{3}}{9}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\frac{1}{600}}=\sqrt{\frac{6}{3600}}=\frac{\sqrt{6}}{\sqrt{3600}}=\frac{\sqrt{6}}{60}\)
\(\sqrt{\frac{11}{540}}=\sqrt{\frac{11}{36.15}}=\frac{1}{6}\sqrt{\frac{165}{15^2}}=\frac{1}{6}.\frac{\sqrt{165}}{15}=\frac{\sqrt{165}}{90}\)
\(\sqrt{\frac{3}{50}}=\sqrt{\frac{3}{25.2}}=\frac{1}{5}\sqrt{\frac{3}{2}}=\frac{1}{5}\sqrt{\frac{6}{4}}=\frac{1}{5}.\frac{\sqrt{6}}{2}=\frac{\sqrt{6}}{10}\)
\(\sqrt{\frac{5}{98}}=\sqrt{\frac{5}{49.2}}=\frac{1}{7}\sqrt{\frac{5}{2}}=\frac{1}{7}.\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{14}\)
\(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\left|1-\sqrt{3}\right|}{\sqrt{9.3}}=\frac{\sqrt{3}-1}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{9}\)
Khử mẫu biểu thức chứa căn ms đúng
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}=\sqrt{\frac{\left(1+\sqrt{2}\right)^2\cdot\left(1+\sqrt{2}\right)}{3^2\cdot3}}=\frac{1+\sqrt{2}}{3}\cdot\sqrt{\frac{1+\sqrt{2}}{3}}\)
\(=\frac{1+\sqrt{2}}{3}\cdot\frac{\sqrt{3\cdot\left(1+\sqrt{2}\right)}}{3}=\frac{1+\sqrt{2}}{9}\cdot\sqrt{3+3\sqrt{2}}\)
a) \(\sqrt{\frac{3}{125}}=\frac{\sqrt{3.125}}{125}=\frac{\sqrt{375}}{125}=\frac{5\sqrt{15}}{125}=\frac{\sqrt{15}}{25}\)
b) \(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)
c) \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\sqrt{27\left(1-\sqrt{3}\right)^2}}{27}=\frac{3.\left(\sqrt{3}-1\right)\sqrt{3}}{27}=\frac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
d) \(\sqrt{\frac{11}{540}}=\frac{\sqrt{11.540}}{540}=\frac{\sqrt{5940}}{50}=\frac{6\sqrt{165}}{50}=\frac{3\sqrt{165}}{25}\)
a: \(\sqrt{\dfrac{3}{2}a^2}=\left|a\right|\cdot\dfrac{\sqrt{6}}{2}\)
b: \(\sqrt{\dfrac{1}{600}}=\dfrac{1}{10\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{6}{100}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{10}{196}}=\dfrac{1}{14}\cdot\sqrt{10}\)
c: \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)
d: căn 2/3=căn 6/9=1/3*căn 6
e: \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{25}}=\pm\dfrac{x\sqrt{5}}{5}\)
f: \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3x}{x^2}}=\dfrac{\sqrt{3x}}{\left|x\right|}\)
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)
bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
(Ghi nhớ: Khử căn ở mẫu tức là nhân cả tử và mẫu với thừa số có chứa căn.)