Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\frac{z}{7}=-\frac{11}{-28}\)
\(\Leftrightarrow z.\left(-28\right)=-11.7\)
\(\Leftrightarrow z.\left(-28\right)=-77\)
\(\Leftrightarrow z=\frac{11}{4}\)
\(a,-\frac{2}{3}=\frac{x-3}{-6}=\frac{10}{5-y}=\frac{4-2z}{9}\)
Xét :
\(-\frac{2}{3}=\frac{x-3}{-6}\)
\(\Leftrightarrow-2.\left(-6\right)=\left(x-3\right).3\)
\(\Leftrightarrow12=\left(x-3\right).3\)
\(\Leftrightarrow4=x-3\Leftrightarrow x=7\)
Xét
\(-\frac{2}{3}=\frac{10}{5-y}\)
\(\Leftrightarrow-2.\left(5-y\right)=10.3\)
\(\Leftrightarrow-10+2y=30\)
\(\Leftrightarrow2y=40\Leftrightarrow y=20\)
Xét :
\(-\frac{2}{3}=\frac{4-2z}{9}\)
\(\Leftrightarrow-2.9=\left(4-2z\right).3\)
\(\Leftrightarrow-18=\left(4-2z\right).3\)
\(\Leftrightarrow-6=4-2z\)
\(\Leftrightarrow10=2z\Leftrightarrow z=5\)
Vậy \(\left(x;y;z\right)=\left(7;20;5\right)\)
Vì -24:-6=4
mà -24:-6=x:3=4:y^2=z^3:-2
Suy ra x=4x3=12
y^2=4:4=1; y=1
z^3=4x-2=-8;z=-2
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
\(\hept{\begin{cases}x+y+z+t=1\\x+y+z=2\end{cases}}\)
\(\Rightarrow\left(x+y+z+t\right)-\left(x+y+z\right)=1-2\)
\(\Rightarrow t=-1\)
\(\hept{\begin{cases}x+y+z+t=1\\y+z+t=3\end{cases}}\)
\(\Rightarrow\left(x+y+z+t\right)-\left(y+z+t\right)=1-3\)
\(\Rightarrow x=-2\)
\(\hept{\begin{cases}x+y+z+t=1\\z+x+t=4\end{cases}}\)
\(\Rightarrow\left(x+y+z+t\right)-\left(z+x+t\right)=1-4\)
\(\Rightarrow y=-3\)
\(x+y+z+t=1\)
\(\Rightarrow\left(-2\right)+\left(-3\right)+\left(-1\right)+t=1\)
\(\Rightarrow\left(-6\right)+t=1\)
\(\Rightarrow t=7\)
\(\hept{\begin{cases}x+y=3\\y+z=-1\\z+x=-2\end{cases}}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=0\)
\(\Rightarrow2\left(x+y+z\right)=0\)
\(\Rightarrow x+y+z=0\)
\(\hept{\begin{cases}z=0-\left(x+y\right)=-3\\x=0-\left(y+z\right)=1\\y=0-\left(z+x\right)=2\end{cases}}\)
Bài 1 :
a) 16.(38−2)−38(16−1)
= 16 * 38 - 2* 16 - 16 *38 + 38
= - 32 +38
= 6
b) (−41).(59+2)+59(41−2)
= (-41) * 59 - 41 *2 + 41 * 59 - 59 *2
= 2(-41 - 59)
= 2* (-100)
= -200
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
=> 2(x+ y + z)= 2+3+(-5)= 0
=> x+y +z =0
=> z= (x+y+z) -(x+y) = 0-2 =-2
x= (x+y+z) -(y+z) = 0-3 =-3
y = (x+y+z) - (x+z) = 0 -(-5) =0+5 =5
Vậy x= -2 ; y=-3 ; z=5
Bài 3 : Tìm x ; y ∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
(sao có 3 dấu ngoặc z?)
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . ( xy - 1 ) = 3
Cậu có chắc của lớp 6 không ???
Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)
Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
x=y=z