K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Điều kiện xác định : \(x\ne-1\)

Phương trình đã cho tương đương với :

\(6^x.4^{x^2}=4.6^{\frac{2x}{x+1}}\Leftrightarrow4^{x^2-1}=6^{\frac{x-x^2}{x+1}}\Leftrightarrow x^2-1=\frac{x-x^2}{x+1}\log_46\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x+1\right)^2+x\log_46\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{-2-\log_46\pm\sqrt{\log^2_46+4\log_46}}{2}\end{array}\right.\) (thỏa mãn điều kiện)

6 tháng 5 2016

2x*3x*\(4^{x^2}\)=\(\frac{4.36x}{x+1}\)

\(2^x.3^x.4^{x^2}=\frac{144x}{x+1}\)

\(2^x.3^x.4^{x^2}-\frac{144x}{x+1}=0\)

\(\frac{\left(x+1\right)2^x.3^x.4^{x^2}-144x}{x+1}=0\)

\(\left(x+1\right)2^x.3^x.4^{x^2}-144x=0\)

\(x=\frac{71}{10000}\)

 

NV
23 tháng 7 2020

ĐKXĐ: \(x\ne\left\{0;\frac{-3\pm\sqrt{13}}{2}\right\}\)

Phương trình tương đương: \(\frac{x^2+\frac{1}{x^2}-1}{x-\frac{1}{x}+3}=\frac{1}{2}\)

Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)

Pt trở thành: \(\frac{a^2+1}{a+3}=\frac{1}{2}\)

\(\Leftrightarrow2a^2+2=a+3\)

\(\Leftrightarrow2a^2-a-1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=1\\x-\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-1=0\\2x^2+x-2=0\end{matrix}\right.\) (casio)

27 tháng 2 2016

\(\Leftrightarrow\)  \(\left(x^2+3x-4\right)^2+4\left(x^2+3x-4\right)+4=x^2+4x+4\)

\(\Leftrightarrow\) \(\left(x^2+3x-2\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\) \(\begin{cases}x^2+3x-2=x+2\\x^2+3x-2=-x+2\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}x^2+2x-4=0\\x^2+4x=0\end{cases}\)

\(\Leftrightarrow\)  \(x\in\left\{-1\pm\sqrt{5};-4;0\right\}\)

Vậy phương trình đã cho có tập nghiệm T =\(\left\{-1\pm\sqrt{5};-4;0\right\}\)

9 tháng 5 2016

Phương trình ban đầu \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}=2^{\frac{3}{2}}.2^{-3}\)

                                 \(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}=2^{\frac{3}{2}-3}\)

                                 \(\Leftrightarrow x=\frac{62}{7}\) là nghiệm của phương trình

4 tháng 12 2021

Answer:

b) \(2\sqrt{x+3}=9x^2-x-4\)

ĐK: x\(x\ge-3\) phương trình tương đương:

Ta có: \(2\sqrt{x+3}=9x^2-x-4\)

\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)

\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)

\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)

\(\left(1+\sqrt{3+x}\right)^2=9x^2\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)

7 tháng 5 2016

Từ bất phương trình ta có : \(\Leftrightarrow\left(3^x+x-4\right)\left(x^2+1\right)\le0\Leftrightarrow3^x+x-4\le0\)

Xét hàm số : \(f\left(x\right)=3^x+x-4;f'\left(x\right)=3^x\ln3+1>0\)

Suy ra hàm số đồng biến trên R

Do đó bất phương trình \(\Leftrightarrow f\left(x\right)\le f\left(1\right)\Leftrightarrow x\le1\)

Vậy bất phương trình có tập nghiệm S = (-\(\infty;1\)]

9 tháng 5 2016

\(\Leftrightarrow7.2^x=13.3^x\Leftrightarrow\left(\frac{3}{2}\right)^x=\frac{7}{13}\Leftrightarrow x=\log_{\frac{3}{2}}\frac{7}{13}\)