Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
Giải phương trình trên , trình bày rõ ràng !
\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Rightarrow\frac{x-17}{33}-1+\frac{x-21}{29}-1+\frac{x}{25}-2=0\)
\(\Rightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Rightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
Dễ thấy\(\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)>0\Rightarrow x-50=0\Rightarrow x=50\)
Vậy x = 50
Ta có
\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Leftrightarrow\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
Mà : \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\)
\(\Rightarrow x-50=0\)
\(\Rightarrow x=50\)
Vậy : \(x=50\)
<=>\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>\(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Vì \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
=>x+100=0
<=>x=-100
k nha bạn
\(\Leftrightarrow\frac{37x+1648}{1026}=\frac{11x+556}{272}\Rightarrow\left(37x+1648\right)272=1026\left(11x+556\right)\)
<=>(37x+1648)272=272(37x+1648)
=>272(37x+1648)=1026(11x+556)
=>10064x+448256=11286x+570456
<=>-1222x=122200
=>x=122200:-1222
=>x=-100 ( dễ hiểu chưa hả )
Giải phương trình:
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
\(\Leftrightarrow\left(\frac{x+1}{58}+1\right)+\left(\frac{x+2}{57}+1\right)=\left(\frac{x+3}{56}+1\right)+\left(\frac{x+4}{55}+1\right)\)
\(\Leftrightarrow\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(\Leftrightarrow\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
\(\Leftrightarrow x+59=0\) \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\ne0\right)\)
\(\Leftrightarrow x=-59\)
Vậy : \(S=\left\{-59\right\}\)
\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)
\(\Leftrightarrow\) \(\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}+1\)
\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(\Leftrightarrow\) (x + 59)(\(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\)) = 0
\(\Leftrightarrow\) x + 59 = 0
\(\Leftrightarrow\) x = -59
Vậy S = {-59}
Chúc bn học tốt!!
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}=a^2\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(\Rightarrow\frac{x^2}{3}+\frac{48}{x^2}=3a^2+8\)
\(3a^2+8=10a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\frac{10}{x}-\frac{x}{6}=a\Rightarrow a^2=\frac{100}{x^2}+\frac{x^2}{36}-\frac{10}{3}\Rightarrow\frac{100}{x^2}+\frac{x^2}{36}=a^2+\frac{10}{3}\)
\(\Rightarrow\frac{900}{x^2}+\frac{x^2}{4}=9a^2+30\)
Phương trình trở thành:
\(9a^2+30=2+48a\)
\(\Leftrightarrow9a^2-48a+28=0\Rightarrow\left[{}\begin{matrix}a=\frac{14}{3}\\a=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{10}{x}-\frac{x}{6}=\frac{14}{3}\\\frac{10}{x}-\frac{x}{6}=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{6}+\frac{14}{3}x-10=0\\\frac{x^2}{6}+\frac{2}{3}x-10=0\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{49}{\left(x-7\right)^2}+1=\frac{25}{x^2}\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+x^2=25\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+2.\frac{7x}{x-7}.x+x^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{7x}{x-7}+x\right)^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{x^2}{x-7}\right)^2-\frac{14x^2}{x-7}-25=0\)
Đặt \(\frac{x^2}{x-7}=a\)
\(\Rightarrow a^2-14a-25=0\)
Nghiệm xấu, bạn tự giải tiếp đoạn cuối
\(\frac{43-x}{57}+\frac{46-x}{54}=\frac{49-x}{51}+\frac{52-x}{48}\)
\(\Leftrightarrow\left(\frac{43-x}{57}+1\right)+\left(\frac{46-x}{54}+1\right)=\left(\frac{49-x}{51}+1\right)+\left(\frac{52-x}{48}+1\right)\)
\(\Leftrightarrow\frac{43-x+57}{57}+\frac{46-x+54}{54}=\frac{49-x+51}{51}+\frac{52-x+48}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}=\frac{100-x}{51}+\frac{100-x}{48}\)
\(\Leftrightarrow\frac{100-x}{57}+\frac{100-x}{54}-\left(\frac{100-x}{51}+\frac{100-x}{48}\right)=0\)
\(\Leftrightarrow\left(100-x\right)\left[\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)\right]=0\) (*)
Vì\(\frac{1}{57}< \frac{1}{51},\frac{1}{54}< \frac{1}{48}\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)< \left(\frac{1}{51}+\frac{1}{48}\right)\)
\(\Rightarrow\left(\frac{1}{57}+\frac{1}{54}\right)-\left(\frac{1}{51}+\frac{1}{48}\right)< 0\)
Phương trình (*) xảy ra khi: \(100-x=0\Leftrightarrow x=100\)
Vậy phương trình có nghiệm duy nhất là x = 100
a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)
Phương trình nhận \(x=2\)làm nghiệm nên :
\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)
\(\Leftrightarrow15m+90-20=80\)
\(\Leftrightarrow15m=80+20-90\)
\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)
....
b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)
Phương trình nhận \(x=1\)làm nghiệm nên :
\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)
\(\Leftrightarrow30+15m-32=43\)
\(\Leftrightarrow15m=43+32-30\)
\(\Leftrightarrow15m=45\Leftrightarrow m=3\)
....
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80
Phương trình có nghiệm x = 2:
5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80
<=> 5(m + 6).3 - 4.5 = 80
<=> 15(m + 6) - 4.5 = 80
<=> 15(m + 6) - 20 = 80
<=> 15(m + 6) = 80 + 20
<=> 15(m + 6) = 100
<=> m + 6 = 100 : 15
<=> m + 6 = 20/3
<=> m = 20/3 - 6
<=> m = 2/3
b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43
Phương trình có nghiệm x = 1:
3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43
<=> 3(2 + m).5 - 2.16 = 43
<=> 15(2 + m) - 32 = 43
<=> 15(2 + m) = 43 + 32
<=> 15(2 + m) = 75
<=> 2 + m = 75 : 15
<=> 2 + m = 5
<=> m = 5 - 2
<=> m = 3
ĐKXĐ: ...
Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)
\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)
Phương trình đầu bài tương đương với
\(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)\(\Leftrightarrow\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)\(\Leftrightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Leftrightarrow\orbr{\begin{cases}x+100=0\\\frac{1}{57}+\frac{1}{54}=\frac{1}{51}+\frac{1}{48}\left(sai\right)\end{cases}\Leftrightarrow x+100=0\Leftrightarrow x=-100}\)
Vậy phương trình có nghiệm duy nhất là x=-100
<=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)
<=> \(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=> \(\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
vi \(\frac{1}{57}< \frac{1}{51};\frac{1}{54}< \frac{1}{48}\Rightarrow\frac{1}{57}-\frac{1}{51}+\frac{1}{54}-\frac{1}{48}< 0\)
=> x+100=0 => x= -100
vay pt co nghiem \(x=-100\)