K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=1.b=b\left(1\right)\\b=1.c=c\left(2\right)\\c=1.a=a\left(3\right)\end{matrix}\right.\)

Từ (1); (2); (3) ⇒ a =b =c

25 tháng 10 2019

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=1\Rightarrow a=1.b=b\\\frac{b}{c}=1\Rightarrow b=1.c=c\\\frac{c}{a}=1\Rightarrow c=1.a=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 9 2016

a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Rightarrow ad+bd=bc+bd\)

\(\Rightarrow d\left(a+b\right)=b\left(c+d\right)\)

\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) 

b) \(ad=bc\)

\(\Rightarrow ac-ad=ac-bc\)

\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

7 tháng 10 2019

ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{c-d}{c}=\frac{a-b}{a}\)

10 tháng 8 2017

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm\right)\)

\(b.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}-1=\frac{c}{d}-1_{ }\)

\(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\)\(\left(đpcm\right)\)

\(c.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow\)\(\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\)\(\frac{b+a}{a}=\frac{d+c}{c}\)hay \(\frac{a+b}{a}=\frac{c+d}{d}\left(đpcm\right)\)

\(d.\)Tương tự \(c\) nhé bn. Chúc bn học tốt!

4 tháng 9 2017

Theo đề ta có :

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}\)

* Đầu tiên, ta xét

\(\frac{b}{a-c}=\frac{a}{b}\):

\(\Rightarrow b^2=a\left(a-c\right)\) \(=a^2-ac\)

\(\Rightarrow a^2-b^2=ac\)(1)

* Xét  \(\frac{a+b}{c}=\frac{a}{b}\)

\(\Rightarrow\left(a+b\right)b=ac\)

. Từ (1) ta thay \(ac=a^2-b^2\):

\(\Rightarrow\)\(\left(a+b\right)b=a^2-b^2\)

\(\Rightarrow\left(a+b\right)b=\left(a+b\right)\left(a-b\right)\)

\(\Rightarrow b=a-b\Rightarrow a=b+b=2b\)(2)

* Xét \(\frac{b}{a-c}=\frac{a+b}{c}\):

\(\Rightarrow bc=\left(a-c\right)\left(a+b\right)\)(với a = 2b)

\(\Rightarrow bc=\left(2b-c\right)\left(2b+b\right)\)

\(\Rightarrow bc=\left(2b-c\right).3b\)

\(\Rightarrow\frac{bc}{b}=\frac{\left(2b-c\right).3b}{b}\)

\(\Rightarrow c=\left(2b-c\right).3\)

\(\Rightarrow c=6b-3c\)

\(\Rightarrow6b=c+3c=4c\)(3)

Từ (2) và  (3) \(\Rightarrow\)ta có :

\(a=2b\) và \(6b=4c\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}\)và \(\frac{b}{4}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)(đpcm)

4 tháng 9 2017

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}=\frac{b+\left(a+b\right)+a}{a-c+c+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b}=2\Leftrightarrow a=2b;\frac{a+b}{c}=2\Leftrightarrow a+b=2c\Leftrightarrow2b+b=2c\Leftrightarrow3b=2c\)

Ta có: \(\frac{a}{8}=\frac{2b}{8}=\frac{b}{4};\frac{c}{6}=\frac{2c}{12}=\frac{3b}{12}=\frac{b}{4}\)

=> \(\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)

10 tháng 10 2020

tham khảo trên vietjack.com í

27 tháng 8 2016

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Rightarrow ac+bc=2ab\) 

\(ac-ab=ab-bc\)

\(a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.