\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

 tự giải ak

16 tháng 12 2019

Có người nhờ giải ấy @gunny :33

6 tháng 9 2018

Tiếng Việt lớp 1 lạ nhỉ

1 tháng 4 2020

mình không biết dù là tiêng việt lớp1

chúc bạn học giỏi

chúc bạn nhe

bạn CTV

1 tháng 4 2020

ni ả ní

15 tháng 5 2021

Đây mà là ngữ văn lớp 1 á?

ngữ văn ko phải toán ko giải dc với đây là toán lớp 6 nha

4 tháng 9 2018

mik ko hỉu bạn

 \(f\left(-\frac{1}{2}\right)=2x\sqrt{16x^2+3}+\left(3+2x\right)\sqrt{x^2+3x+3}.\)\(F\left(-\frac{1}{2}\right)=-\sqrt{\frac{16}{4}+3}+\left(3-1\right)\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\) vậy  \(x\ne\left(-\frac{1}{2}\right)\)xét tử cả mẫu với \(x>-\frac{1}{2}\)  \(3\left(2x+1\right)\left(5x^2+3x+3\right)>3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)đặt mẫu = Pain\(Pain>-1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)vậy...
Đọc tiếp

 

\(f\left(-\frac{1}{2}\right)=2x\sqrt{16x^2+3}+\left(3+2x\right)\sqrt{x^2+3x+3}.\)

\(F\left(-\frac{1}{2}\right)=-\sqrt{\frac{16}{4}+3}+\left(3-1\right)\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\) 

vậy  \(x\ne\left(-\frac{1}{2}\right)\)

xét tử cả mẫu với \(x>-\frac{1}{2}\)

 

 \(3\left(2x+1\right)\left(5x^2+3x+3\right)>3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)

đặt mẫu = Pain

\(Pain>-1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)

vậy với  \(x>-\frac{1}{2}\) thì pt vô nghiệm  (1)

xét tử cả mẫu vỡi \(x< -\frac{1}{2}\)

\(3\left(3x+1\right)\left(5x^2+3x+3\right)< 3\left(-1+1\right)\left(\frac{5}{4}-\frac{3}{2}+3\right)=0\)

\(Pain< -1\sqrt{\frac{16}{4}+3}+2\sqrt{\frac{1}{4}-\frac{3}{2}+3}=0\)

vậy với x< (-1/2) thì cả tử cả mẫu đều âm ,  

suy ra với \(x< -\frac{1}{2}\) thì pt cũng vô nghiệm (2)

từ (1)(2) chúa suy ra ...

 

                  

1
26 tháng 11 2021

6666+555-333+111+8888+88+66+44444444=

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)Chứng minh rằng nếu P là số chính phương thì m=nGiả sử \(m>n>1\) Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)\(=-4n^3+4< 0\) với  \(\forall n>1\)\(\Rightarrow\left(mn^2-2\right)^2<...
Đọc tiếp

Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)

Chứng minh rằng nếu P là số chính phương thì m=n

Giả sử \(m>n>1\)

 Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)

\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)

\(=-4n^3+4< 0\) với  \(\forall n>1\)

\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)

Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)

\(=m^2n^4-4mn^2+4n^3-m^2n^4\)

\(=-4mn^2+4n^3\)

\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)

\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)

\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)

Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\)  với \(\forall n\ge2\)

\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)

\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)

Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?

Giả sử \(m< n\)

\(\Rightarrow P>m^2n^2\left(3\right)\)

Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)

\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)

\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\) 

\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)

Để P là số chính phương thì \(P=\left(mn+1\right)^2\)

\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)

\(\Rightarrow-4m+4n-2mn=1\) quá VL

Với  \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v

P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((

 

 

1
15 tháng 11 2019

 \(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)

 \(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)

Đặt : \(F\left(x\right)=ax+b\)

Với x=1  từ (1) và (3) 

\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow a+b=4\)(*)

Với x=3 từ (3) và (2)

\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)

\(\Rightarrow3a+b=14\)(**)

Từ (*) và (**)

\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)

\(\Rightarrow F\left(x\right)=ax+b=5x-1\)

T lm r, ko bt có đúng ko:))

13 tháng 5 2020

\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)

\(=x^2+y^2+\frac{2x}{y}+\frac{2y}{x}+\frac{1}{x^2}+\frac{1}{y^2}\)

\(=4+\frac{2x^2+2y^2}{xy}+\frac{x^2+y^2}{x^2y^2}\)

\(=4+\frac{8}{xy}+\frac{4}{x^2y^2}\)

\(=\left(2+\frac{2}{xy}\right)^2\ge0\)

vậy giá trị nhỏ nhất của A là 0.

Nếu phải tìm dấu bằng thì ta rút y theo x rồi thay vào pt đầu ra đc 2 nghiệm x1,x2

23 tháng 5 2020

lop 1 da hoc cai nay dau

11 tháng 7 2021

Cái này là ngữ văn lớp 1 sao nhìn nó khó thế mình còn chẳng giải được