Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{6}{11}x=\frac{6x}{11}=\frac{18x}{33}\)
\(\frac{9}{2}y=\frac{9y}{2}=\frac{18y}{4}\)
Mà: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) => \(\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}\)
Theo đề bài, ta có: y - x + z = -196
=> Áp dụng tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{18y}{4}=\frac{18x}{33}=\frac{18z}{5}=\frac{18y-18x+18z}{4-33+5}=\frac{18\left(y-x+z\right)}{-24}=\frac{-18.196}{-24}=\frac{3528}{24}=147\)
=>\(\left\{{}\begin{matrix}\frac{6}{11}x=147\Leftrightarrow x=147.\frac{11}{6}=\frac{539}{2}\\\frac{9}{2}y=147\Leftrightarrow y=147.\frac{2}{9}=\frac{98}{3}\\\frac{18}{5}z=147\Leftrightarrow z=147.\frac{5}{18}=\frac{245}{6}\end{matrix}\right.\) (TMĐK)
Vậy: \(x=\frac{539}{2};y=\frac{98}{3};z=\frac{245}{6}\)
Chúc bạn học tốt!Tick cho mình nhé!
Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)
\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)
Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)
\(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)
\(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)
Vậy ,,,,,,,,,,,,,,,,,,
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng TC DTSBN ta có: \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-16}{-24}=\frac{2}{3}\)
Đến đây dễ rồi tự làm nhé
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau. ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-16}{-24}=\frac{2}{3}\)
\(\Rightarrow x=22;y=\frac{8}{3};z=\frac{10}{3}\)
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Leftrightarrow\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)
\(\Leftrightarrow\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}\)
mà z-x=-196
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}=\frac{18z-18x}{5-33}=\frac{18\left(z-x\right)}{-28}=\frac{-18\cdot196}{-28}=126\)
Do đó:
\(\left\{{}\begin{matrix}\frac{6x}{11}=126\\\frac{9}{2}y=126\\\frac{18z}{5}=126\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=1386\\y=28\\18z=630\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=231\\y=28\\z=35\end{matrix}\right.\)
Vậy: (x,y,z)=(231;28;35)