K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540

<=>1/3(3/5.8+3/8.11+...+3/x(x+3)     =101/1540

<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540

<=>1/5-1/x+3=303/1540<=>1/x+3=1/308

<=>x+3=308<=>x=305

Nguồn CHTT, hihi !

15 tháng 8 2019

Tham gia event này đi mọi người https://olm.vn/hoi-dap/detail/227766827875.html

22 tháng 8 2017

 bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

28 tháng 8 2016

Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)

\(\Rightarrow A=\frac{99}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)

\(\Rightarrow A=\frac{99}{400}\)

Có: \(\frac{1}{4}=\frac{100}{400}\)

Lại có: \(\frac{99}{400}< \frac{100}{400}\)

Vậy A < 1/4 (đpcm)

 

28 tháng 8 2016

giỏi 

10 tháng 9 2016

Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

    \(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy 

 

 

28 tháng 8 2016

Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy ...