\(\frac{1}{\sqrt{2}-\sqrt{3}}\)  X \(\sqrt{\frac{3\sqrt{2}-2\sqrt{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

\(=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}}\)

\(=\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}.\left(\frac{\left(3\sqrt{2}-2\sqrt{3}\right)^2}{\sqrt{6}}\right)\)

\(=\frac{\sqrt{3}+\sqrt{2}}{-1}.\left(\frac{30-12\sqrt{6}}{\sqrt{6}}\right)\)

\(=\frac{\sqrt{6}\left(\sqrt{150}-12\right)\left(\sqrt{3}+\sqrt{2}\right)}{-\sqrt{6}}\)

\(=-\left(5\sqrt{6}-12\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=-\left(5\sqrt{18}+5\sqrt{12}-12\sqrt{3}-12\sqrt{2}\right)\)

\(=-\left(15\sqrt{2}+10\sqrt{3}-12\sqrt{3}-12\sqrt{2}\right)\)

\(=-\left(3\sqrt{2}-2\sqrt{3}\right)\)

\(=2\sqrt{3}-3\sqrt{2}\)

VẬY   \(VT=2\sqrt{3}-3\sqrt{2}\)

16 tháng 8 2020

\(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}.\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}.\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right).\sqrt{\frac{1}{3-2}}\)

\(=-\left(3-2\right)=-1\)

12 tháng 8 2017

\(B=\left(\sqrt{x}+\frac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\right)\frac{\left(\sqrt{x}-\sqrt{5}\right)^2}{\sqrt{x}-\sqrt{5}}=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-\sqrt{5}\right)=x-5\)

11 tháng 10 2016

Bạn tự tìm điều kiện xác định nhé :)

\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)

13 tháng 7 2018

B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)

Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)

cộng vế theo vế ta được: \(x+y=-x-y\)

\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)

\(\Leftrightarrow x^{2013}+y^{2013}=0\)

13 tháng 7 2018

a,Ta có x =...

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)

x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)

x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)

x = 2

sau đó thay x=2 vào A nhé.

A=2014 !!!

2 tháng 4 2017

Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:

a) Ta có

\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)

\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)

\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)

\(=\sqrt{2017}-1\)

\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)

b) Ta có

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

Tương tự ta có

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......................

\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

Suy ra

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

1 tháng 4 2017

a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5  + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \frac{{(\sqrt 5  + 1)(\sqrt 5  - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017}  + \sqrt {2013} )(\sqrt {2017}  - \sqrt {2013} )}}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \sqrt 5  - 1 + \sqrt 9  - \sqrt 5  + ... + \sqrt {2017}  - \sqrt {2013} \\
 = 1 + \sqrt 5  - \sqrt 5  + \sqrt 9  - \sqrt 9  + ... + \sqrt {2013}  - \sqrt {2013}  + \sqrt {2017} \\
 = 1 + \sqrt {2017} \\
 \Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]

25 tháng 10 2020

Bài 2: 

a) \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2-1}{\sqrt{1}+\sqrt{2}}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}=\sqrt{2}-\sqrt{1}\)

Tương tự ta có: \(\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\);

\(\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\); ............. ; \(\frac{1}{\sqrt{2024}+\sqrt{2025}}=\sqrt{2025}-\sqrt{2024}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{2025}-\sqrt{2024}\)

\(=\sqrt{2025}-\sqrt{1}=45-1=44\)

Bài 4: 

\(M=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\frac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\frac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}\)

\(=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-\sqrt{8}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+\sqrt{8}\right)^2}}\)

\(=\frac{\left|\sqrt{2}-1\right|}{\left|3-\sqrt{8}\right|}-\frac{\left|\sqrt{2}+1\right|}{\left|3+\sqrt{8}\right|}=\frac{\sqrt{2}-1}{3-\sqrt{8}}-\frac{\sqrt{2}+1}{3+\sqrt{8}}\)

\(=\frac{\left(\sqrt{2}-1\right)\left(3+\sqrt{8}\right)}{\left(3-\sqrt{8}\right)\left(3+\sqrt{8}\right)}-\frac{\left(\sqrt{2}+1\right)\left(3-\sqrt{8}\right)}{\left(3+\sqrt{8}\right)\left(3-\sqrt{8}\right)}\)

\(=\left(3\sqrt{2}+\sqrt{16}-3-\sqrt{8}\right)-\left(3\sqrt{2}-\sqrt{16}+3-\sqrt{8}\right)\)

\(=3\sqrt{2}+4-3-\sqrt{8}-3\sqrt{2}+4-3+\sqrt{8}\)

\(=8-6=2\)là số tự nhiên