Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+........+\frac{1}{1280}\)
\(=\frac{1}{5}+\left(\frac{1}{5}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{20}\right)+.....+\left(\frac{1}{640}-\frac{1}{1280}\right)\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{20}+......+\frac{1}{640}-\frac{1}{1280}\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{1280}\)( Tối giản các phân số cho nhau )
\(=\frac{2}{5}-\frac{1}{1280}\)
\(=\frac{511}{1280}\)
mình cho bạn đó bạn đồng ý nhận lời mời kết bạn từ mình nha!!!!
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\cdot5\cdot\frac{1}{5}\)
\(=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(2-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\frac{511}{256}\cdot\frac{1}{5}\)
\(=\frac{511}{1280}\)
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10\cdot1}+\frac{1}{10\cdot2}+\frac{1}{10\cdot3}+\frac{1}{10\cdot4}+...+\frac{1}{10\cdot128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)=\frac{1}{x-2}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=2-\frac{1}{2^7}\)
Thay vào biểu thức ta có :
\(\frac{1}{10}\cdot\left(2-\frac{1}{2^7}\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\frac{255}{128}=\frac{1}{x-2}\Leftrightarrow\frac{51}{256}=\frac{1}{x-2}\)
\(\Leftrightarrow51x-102=256\)
\(51x=358\Rightarrow x=\frac{358}{51}\)
Vậy ..................................
a,=25/6;7/6=25/6x6/7=25/7
b,=7/2x32/6=56/3
c,=17/5-11/10=34/10-11/10=23/10
d,=8/3+11/4=32/12+33/12=65/12
Gọi tổng trên là A
Ta có : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{2560}\)
\(2A=2\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(2A=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1280}\)
\(2A-A=\left(\frac{2}{5}+\frac{1}{5}+...+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(A\left(2-1\right)=\frac{2}{5}-\frac{1}{2560}\)
\(A.1=\frac{1024}{2560}-\frac{1}{2560}\)
\(A=\frac{1023}{2560}\)
Ta có : A = 1/5 + 1/10 + 1/20 + ... + 1/2560
2A = 2 ( 1/5 + 1/10 + ... + 1/2560 )
2A = 2/5 + 1/5 + 1/10 + .. + 1/2560
2A - A = ( 2/5 + 1/5 + ... + 1/1280 ) - ( 1/5 + 1/10 + ... + 1/2560 )
A = 2 - 1 = 2/5 - 1/2560
A.1 = 1024/2560 - 1/2560
A = 1023 = 2560