Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110 = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/9.10 + 1/10.11 = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/9 - 1/10 + 1/10 - 1/11 = 1/2 - 1/11 = 9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)
\(B=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{18\cdot20}\)
\(B=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{18\cdot20}\)
\(B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)
\(B=\frac{1}{2}-\frac{1}{20}\)
\(B=\frac{9}{20}\)
=))
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\frac{1}{2}+\frac{1}{5}+\frac{2}{3}+x+x=\frac{1}{4}\)
\(\frac{41}{30}+2x=\frac{1}{4}\)
\(2x=\frac{1}{4}-\frac{41}{30}\)
\(2x=\frac{-67}{60}\)
\(x=\frac{-67}{60}:2\)
\(x=\frac{-67}{120}\)
Vậy...
tk mk nha Phạm Trần Thảo Anh
\(\frac{41}{30}+2x=\frac{1}{4}\)
\(2x=\frac{1}{4}-\frac{41}{30}\)
\(2x=\frac{-67}{66}\)
\(x=\frac{67}{60}\div2\)
\(x=\frac{-67}{120}\)
Vậy số cần tìm đó LÀ : -67/120
giai câu a
a) ta có (\(\frac{2}{11.13}\)+\(\frac{2}{13.15}\)+.....+\(\frac{2}{19.21}\))*462 - x =19
(\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{19}\)-\(\frac{1}{21}\)) * 462 -x=19
(\(\frac{1}{11}\)-\(\frac{1}{21}\))*462-x=19
A=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
A=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
A=1-1/8
A=7/8
GOOD LUCK
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....-\frac{1}{8}\)
\(A=1-\frac{1}{8}=\frac{7}{8}\)
\(x(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}=\) \(5\frac{1}{2}\)
\(x\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{11\cdot12}\right)=\frac{11}{2}\)
\(x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}\right)=\frac{11}{2}\)
\(x\left(1-\frac{1}{12}\right)=\frac{11}{2}\)
\(x\cdot\frac{11}{12}=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{11}{12}\)
\(x=6\)
Vậy x = 6
\(\frac{x}{2}+\frac{x}{6}+\frac{x}{12}+\frac{x}{20}+...+\frac{x}{132}=5\frac{1}{2}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\right)=\frac{11}{2}\)
\(\Rightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)=\frac{11}{2}\)
\(\Rightarrow x\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}=\frac{11}{2}\right)\)
\(\Rightarrow x\left(1-\frac{1}{12}\right)=\frac{11}{2}\)
\(\Rightarrow x.\frac{11}{12}=\frac{11}{12}\)
\(\Rightarrow x=\frac{11}{12}:\frac{11}{12}=1\)
Vậy x = 1
a) \(\left(\frac{4}{3}-\frac{4}{6}\right)+\left(\frac{4}{6}-\frac{4}{9}\right)+\left(\frac{4}{9}-\frac{4}{10}\right)+\left(\frac{4}{12}-\frac{4}{15}\right)\)
\(=\frac{4}{15}-\frac{4}{3}=\frac{-16}{15}\)
C) bạn chỉ ần bỏ các số giống nhau thôi nhé
= 1
b)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
= 1/1 - 1/7
= 6/7
1/2+1/6+1/12+1/20+1/30+1/42
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1/1-1/7=7/7-1/7=6/7
Vậy....
* . Là dấu nhân