K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

\(=\dfrac{\left(x-4\right)\cdot\left(x+4\right)}{x}\cdot\dfrac{x}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)

1: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{16}{x+2}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)

\(=\dfrac{-\left(x+1\right)}{x^2+x+1}\)

2: Để B=0 thì -x-1=0

hay x=-1(nhận)

12 tháng 7 2017

a, \(\dfrac{4x^2-8xy}{10y-5x}=\dfrac{4x\left(x-2y\right)}{5\left(2y-x\right)}=\dfrac{-4x}{5}\)

b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}=\dfrac{\left(x-2-1\right)\left(x-2+1\right)}{\left(x-3\right)^2}\)

\(=\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)^2}=\dfrac{x-1}{x-3}\)

c, \(\dfrac{x^2+8x+16}{x^2-16}=\dfrac{\left(x+4\right)^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\)

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

9 tháng 3 2018

M = \(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right).\dfrac{x^2+8x+16}{32}\)

= \(\left(\dfrac{4\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}-\dfrac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right).\dfrac{\left(x+4\right)^2}{32}\)

= \(\left(\dfrac{4x+16-4x+16}{\left(x-4\right)\left(x+4\right)}\right).\dfrac{\left(x+4\right)^2}{32}\)

= \(\dfrac{32}{x^2-16}.\dfrac{\left(x+4\right)^2}{32}\)

= \(\dfrac{\left(x+4\right)^2}{x^2-16}\) \(=\dfrac{x+4}{x-4}\)

a: \(M=6x+\dfrac{x^2+2x-x^2+2x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2+4\right)-2x\left(x^2-4\right)}{4x}\)

\(=6+\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2-2x+4\right)}{4x}\)

\(=6+x^2-2x+4=x^2-2x+10\)

b: Để \(M^2=M\) thì M=0 hoặc M=1

=>\(x\in\varnothing\)

c: Vì \(M=x^2-2x+10=\left(x-1\right)^2+9>0\)

nên \(M^2>M\forall x\)

a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)

b: Khi x=9 thì B=1/(3-2)=1

11 tháng 2 2018

a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)

\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)

\(\Leftrightarrow6x+6+12x-8=x-7\)

\(\Leftrightarrow6x+12x-x=-7-6+8\)

\(\Leftrightarrow17x=-5\)

\(\Leftrightarrow x=\dfrac{-5}{17}\)

Vậy .........................

b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)

\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)

\(\Leftrightarrow2x^2-x^2+x+15-21=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2-2x+3x-6=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)

Vậy \(S=\left\{2\right\}\)

d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)

Vậy .........................

P/s: các câu còn lại tương tự, bn tự giải nha

12 tháng 2 2018

làm hộ mình câu còn lại đi :))