Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)
b) \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
a. 857+3,15+127+4,35
=\(\dfrac{61}{7}+\dfrac{63}{20}+\dfrac{9}{7}+\dfrac{87}{20}\)
=\(\left(\dfrac{61}{7}+\dfrac{9}{7}\right)+\left(\dfrac{63}{20}+\dfrac{87}{20}\right)\)
=\(10+\dfrac{15}{2}\)
=\(\dfrac{35}{2}\)
b. (4523−225+7713)−(3523−6613)
=\(4\dfrac{5}{23}-2\dfrac{2}{5}+7\dfrac{7}{13}-3\dfrac{5}{23}+6\dfrac{6}{13}\)
=\(\left(4\dfrac{5}{23}-3\dfrac{5}{23}\right)+\left(7\dfrac{7}{13}+6\dfrac{6}{13}\right)-2\dfrac{2}{5}\)
=\(1+14-\dfrac{12}{5}\)
=15-\(\dfrac{12}{5}\)
=\(\dfrac{63}{5}\)
Câu C khó khó mình chưa giải được !!!
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(=>11-3x+1=\frac{9}{2}-5+3,5x\)
\(=>-3x+12=3,5x-\frac{1}{2}\)
\(=>-3x-3,5x=-\frac{1}{2}-12\)
\(=>-6,5x=-12,5\)
\(=>x=\frac{-12,5}{-6,5}=\frac{25}{13}\)
Ủng hộ nha
\(11-\left(3x-1\right)=\frac{9}{2}-\left(5-3,5x\right)\)
\(11-3x+1=\frac{9}{2}-5+3,5x\)
\(12-3x=-\left(0,5\right)+3,5x\)
\(12,5-3x=3,5x\)
\(12,5=6,5x\)
\(x=12,5:6,5=\frac{25}{13}\)
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-1\right)\)
\(=\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.1=\dfrac{5}{9}\)
a)\(\dfrac{5}{23}.\dfrac{17}{26}+\dfrac{5}{23}.\dfrac{10}{26}-\dfrac{5}{23}\)
\(=\dfrac{5}{23}.\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
\(=\dfrac{5}{23}.\left(\dfrac{27}{26}-\dfrac{26}{26}\right)\)
=\(\dfrac{5}{23}.\dfrac{1}{26}\)
\(=\dfrac{5}{598}\)
b)\(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
\(=\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{5}{9}.\left(\dfrac{7}{7}\right)\)
=\(\dfrac{5}{9}.1\)
\(=\dfrac{5}{9}\)
\(4\dfrac{3}{4}+\left(-0,37\right)+\dfrac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\dfrac{1}{12}\)
\(=\left(4\dfrac{3}{4}+\dfrac{1}{8}+3\dfrac{1}{12}\right)+\left[\left(-0,37\right)+\left(-1,28\right)+\left(-2,5\right)\right]\)
\(=\left(\dfrac{19}{4}+\dfrac{1}{8}+\dfrac{37}{12}\right)+\left(-4,15\right)\)
\(=\dfrac{191}{24}-4,15\)
\(=\dfrac{457}{120}=3\dfrac{97}{120}\)
\(4\dfrac{3}{4}+\left(-0,37\right)+\dfrac{1}{8}+\left(-1,28\right)+\left(-2,5\right)+3\dfrac{1}{12}\)
\(=\dfrac{19}{4}+\left(-\dfrac{37}{100}\right)+\dfrac{1}{8}+\left(-\dfrac{32}{25}\right)+\left(-\dfrac{5}{2}\right)+\dfrac{37}{12}\)
=\(\dfrac{475}{100}+\left(-\dfrac{37}{100}\right)+\dfrac{1}{8}+\left(-\dfrac{32}{25}\right)+\left(-\dfrac{5}{2}\right)+\dfrac{37}{12}\)
=\(\dfrac{219}{50}+\dfrac{25}{200}+\left(-\dfrac{256}{200}\right)+\left(-\dfrac{5}{2}\right)+\dfrac{37}{12}\)
=\(\dfrac{219}{50}+\left(-\dfrac{231}{200}\right)+\left(-\dfrac{30}{12}+\dfrac{37}{12}\right)\)
=
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$