Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x^2+2x+1-1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow x+1-\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow2x+5-\dfrac{1}{x+1}+\dfrac{4}{x+4}=2x+5+\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
=>-x-4+4x+4=2x+6+3x+6
=>3x=5x+12
=>-2x=12
hay x=-6(nhận)
\(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)\(\Leftrightarrow\)\(\dfrac{x^2+2x+1+1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow\) \(x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = x + 2 + x + 3 - x - 1 - x - 4
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = 0
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) = \(\dfrac{2}{x+2}\) + \(\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}\) + \(\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}\) = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}\) + \(\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x+4+4x+4}{x^2+5x+4}\) = \(\dfrac{2x+6+3x+6}{x^2+5x+6}\)
\(\Leftrightarrow\) \(\dfrac{5x+8}{x^2+5x+4}\) = \(\dfrac{5x+12}{x^2+5x+6}\)
Đặt 5x + 8 = y; x2 + 5x + 4 = t, ta có:
\(\dfrac{y}{t}\) = \(\dfrac{y+4}{t+2}\)
\(\Leftrightarrow\) \(\dfrac{y\left(t+2\right)}{t\left(t+2\right)}\) = \(\dfrac{t\left(y+4\right)}{t\left(t+2\right)}\)
\(\Leftrightarrow\) yt + 2y = yt + 4t
\(\Leftrightarrow\) 2y = 4t
\(\Leftrightarrow\) 2(5x + 8) = 4(x2 + 5x + 4)
\(\Leftrightarrow\) 10x + 16 = 4x2 + 20x + 16
\(\Leftrightarrow\) 16 - 16 = 4x2 + 20x - 10x
\(\Leftrightarrow\) 0 = 4x2 + 10x
\(\Leftrightarrow\) 2x(2x + 5) = 0
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
CHÚC BN HOK TỐT...
a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)
=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)
=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)
=>x=0
b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)
=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)
=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)
Đến đây thì bạn giải giống câu a
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)=72\left(x+3\right)+84\left(x+4\right)\)
\(\Leftrightarrow56\left(x+1\right)+63\left(x+2\right)-72\left(x+3\right)-84\left(x+4\right)=0\)
\(\Leftrightarrow-37x-370=0\Leftrightarrow x=-10\)
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy $x = -10$
b.\(x^3-16x^2+64x=0\)
=>\(x^3-8x^2-8x^2+64x=0\)
=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)
=>\(x\left(x-8\right)\left(x-8\right)=0\)
=>\(x=0\) và \(x-8=0\)
=>x=0 và x= 8
Vậy S={0; 8}
\(|6x-1|=2x+5\)
-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow6x-1=2x+5\)
\(\Leftrightarrow6x-2x=5+1\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)
-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow-6x+1=2x+5\)
\(\Leftrightarrow-6x-2x=5-1\)
\(\Leftrightarrow-8x=4\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)
Vậy S={\(-\dfrac{1}{2}\)}
b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)
=>3x+21=2
=>x=-19/3
d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)
=>8x=8
hay x=1
\(\Leftrightarrow\dfrac{2}{-x^2+6x-8}=\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\\ \Leftrightarrow\left\{{}\begin{matrix}2=\left(-x^2+6x-8\right)\left(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\right)\\-x^2+6x-8\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2=-2x^2+4x+2\\-x^2+6x-8\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\-x^2+6x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\-x^2+6x-8\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\-x^2+6x-8\ne\end{matrix}\right.\end{matrix}\right.\\\Rightarrow x=0\)