\(\dfrac{\sqrt{x}+3}{\sqrt{x}-1}< hoặc=-2\)

tìm x bt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2024

<=> \(\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\) + 2 ≤ 0

<=> \(\dfrac{\sqrt{x}+3+2\sqrt{x}-2}{\sqrt{x}-1}\) ≤ 0

<=> \(\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\) ≤ 0

Mà ( \(3\sqrt{x}\) + 1 ) > 0

=> \(\sqrt{x}-1\) < 0

=> \(\sqrt{x}\) < 1

=> x ϵ [ 0 , 1 )

 

30 tháng 7 2018

mk giải 1 bài lm mẩu nha .

+) ta có : \(A=x-12\sqrt{x}\Leftrightarrow x-12\sqrt{x}-A=0\)

vì phương trình này luôn có nghiệm \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow6^2+A\ge0\Leftrightarrow A\ge-36\)

vậy giá trị nhỏ nhất của \(A\)\(-36\) dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{-b'}{a}=\dfrac{6}{1}=6\Leftrightarrow x=36\)

mấy câu còn lại bn chuyển quế đưa về phương trình bật 2 theo \(x\) rồi giải như trên là đc :

30 tháng 7 2018

lộn ! là phương trình bật 2 đối với ẩn là \(\sqrt{x}\) nha :

DƯƠNG PHAN KHÁNH DƯƠNG

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

Câu 1: 

a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

b: Để P<1 thì \(\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)

\(\Leftrightarrow\sqrt{a}-2< 0\)

hay 0<a<4

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

23 tháng 9 2018

ĐK:x>0,x≠0,x≠1

a) \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{x-1}\right)=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\)\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-3}{x-\sqrt{x}}\)b) Khi x=\(3+2\sqrt{2}\) thì \(P=\dfrac{\sqrt{3+2\sqrt{2}}-3}{3+2\sqrt{2}-\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}+1}-3}{3+2\sqrt{2}-\sqrt{2+2\sqrt{2}+1}}=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-3}{3+2\sqrt{2}-\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-3}{3+2\sqrt{2}-\sqrt{2}-1}=\dfrac{\sqrt{2}-2}{2+\sqrt{2}}=\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{1-\sqrt{2}}{1+\sqrt{2}}\)

c) Ta có \(P< 0\Leftrightarrow\dfrac{\sqrt{x}-3}{x-\sqrt{x}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-3>0\\x-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-3< 0\\x-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow1< x< 9\)

Vậy 1<x<9 thì P<0

24 tháng 9 2018

tại sao lại suy ra được 1<x<9 vậy

bạn giải thích giùm mình với

a; ĐKXĐ: x>=0; x<>1

\(P=\dfrac{x+\sqrt{x}-6\sqrt{x}+4+3\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=3-\sqrt{8}\) vào P, ta được:

\(P=\dfrac{\sqrt{2}-1-1}{\sqrt{2}-1+1}=\dfrac{\sqrt{2}-2}{\sqrt{2}}=1-\sqrt{2}\)

a: \(A=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x+1}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)

b: Để A=1/2 thì \(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\dfrac{1}{2}\)

\(\Leftrightarrow2x+4\sqrt{x}+2-\sqrt{x}=0\)

\(\Leftrightarrow2x+3\sqrt{x}+2=0\)(1)

Đặt \(\sqrt{x}=a\)(a>=0)

(1) trở thành \(2a^2+3a+2=0\)

\(\Delta=3^2-4\cdot2\cdot2=9-16=-7< 0\)

Do đó: (1) vô nghiệm

a: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}-1+2}{x-1}\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\)

b: Để P<0 thì x-1<0

hay 0<x<1

21 tháng 6 2017

1/

a) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2}\cdot\left(\sqrt{x}-3\right)+\sqrt{x}\cdot\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x-3}}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+\sqrt{x}+3\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+4\sqrt{x}+3}\)

21 tháng 6 2017

bài 2 : đk : \(x\ge0;x\ne1\)

a) P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) P = \(\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) P = \(\dfrac{1}{2}\) \(\Leftrightarrow\) \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(\sqrt{x}+3=4-10\sqrt{x}\)

\(\Leftrightarrow\) \(11\sqrt{x}-1=0\) \(\Leftrightarrow\) \(11\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{11}\) \(x=\left(\dfrac{1}{11}\right)^2=\dfrac{1}{121}\)